Nu börjar vi närma oss studiens kärna och kan sy samman några av de tidigare kunskaperna.

Thus, expanding on the oxLDL theory of heart disease, a more comprehensive theory, the ‘oxidised linoleic acid theory of coronary heart disease’, is as follows: dietary linoleic acid, especially when consumed from refined omega-6 vegetable oils, gets incorporated into all blood lipoproteins (such as LDL, VLDL and HDL) increasing the susceptibility of all lipoproteins to oxidise and hence increases cardiovascular risk. (Ref 20)

Min tolkning: Oxiderad linolsyra (oxLDL) kopplas till kranskärlssjukdom, speciellt om omega-6 kommer från raffinerade vegetabiliska oljor. Detta beror på att de ingår i alla blodets lipoproteiner såsom LDL, VLDL samt HDL*. Då de är fleromättade ökar benägenheten att oxidera vilket ökar kardiovaskulär risk risk.

KällaOmega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis – James J DiNicolantonio, James H O’Keefe

Även oxiderat kolesterol (alltså ämnet/kemikalien kolesterol) ingår i plack vilket tidigare ledde till råd att undvika kolesterol från mat då tillagning leder till viss oxidation av råvaror.

However, cholesterol bound to saturated fat does not readily oxidise; this is not the case with linoleic acid. (Ref 21)

Min tolkning: Kolesterol bundet till mättat fett oxiderar inte lätt till skillnad från (kolesterol bundet till fleromättad) linolsyra.

Nog ser du sambanden vid det här laget?

Moreover, lipids from human atherosclerotic plaques have been found to contain oxidised cholesteryl linoleate (cholesterol esters containing linoleic acid). (Ref 21–24)

Min tolkning: Lipider från plack innehåller oxiderat kolesterol förestrat (bundet) till linolsyra (omega-6)

Moreover, the severity of atherosclerosis is noted to increase with increasing oxidised cholesteryl linoleate. (Ref 21 25)

Min tolkning: Plackbildningen blir allvarligare med ökande (mängd/koncentration?) oxiderat kolesterollineolat.

Ur min synvinkel är det rimligt att inte konsumera onödigt mycket omega-6-rika vegetabiliska fetter under den falska förespeglingen att ”vegetabilier är bättre än animalier” eller att ”mer av något livsnödvändigt alltid är bättre”.


*) HDL, High Density Lipoprotein, är en förhållandevis liten och kompakt ”springschas” som transporterar triglycerider (fett) samt kolesterylestrar mellan VLDL och LDL till mer behövande. Detta sker via ett rörformigt protein som heter CETP, Cholesterylester Transfer Protein. En del transporter går till levern för återvinning vilket ger HDL epitetet ”det goda kolesterolet”. HDL finns i 3 fraktioner.

20. Reaven P, Parthasarathy S, Grasse BJ, et al. Effects of oleaterich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. J Clin Invest 1993;91:668–76. Finns även i fulltext.

21. Belkner J, Wiesner R, Kühn H, et al. The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS Lett 1991;279:110–4.

22. Brooks CJ, Harland WA, Steel G, et al. Lipids of human atheroma: isolation of hydroxyoctade cadienoic acids from advanced aortal lesions. Biochim Biophys Acta 1970;202:563–6.

23. Harland WA, Gilbert JD, Steel G, et al. Lipids of human atheroma. 5. The occurrence of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis 1971;13:239–46.

24. Brooks CJ, Steel G, Gilbert JD, et al. Lipids of human atheroma. 4. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis 1971;13:223–37.

25. Glavind J, Hartmann S, Clemmesen J, et al. Studies on the role of lipoperoxides in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol Microbiol Scand 1952;30:1–6.

Annonser

Vid det här laget vet du att lipoproteiner är molekyler som transporterar lipider, fettliknande ämnen, i kroppens vattenrika miljö, lymfa och blod. De bär olika markörer, en kombination av avsändare, innehållsdeklaration och mottagare. Dessa markörer har namn som apoB48, apoB100 och apoA1 men det finns fler.

Lipoproteiner med apoB48 bildas i tunntarmen och transporterar lite större lipider (främst långkedjiga fetter och vitaminer) via lymfan och vidare ut i blodet. De nybildade kallas kylomikroner (chylomicron), är mycket stora och till brädden fyllda med fett som de levererar till celler som visar receptorer, mottagare, som reagerar på apoB48. Allt eftersom krymper de när de levererar ut fettet och blir kylomikronrester (chylomicron remnants) som tas upp och återvinns av levern. Efter 10-12 timmar tar vanligen denna lipidtransport paus till dess du äter igen.

Levern producerar fett ur energiöverskott från passerande kolhydrater och fett. I bästa fall exporteraras allt  via nyproducerat VLDL, Very Low Density Lipoprotein. Det är stort, fettrikt och därmed mycket ”lätt”. Nybildat VLDL bär kännetecknet apoB* men även andra. Under resan delar VLDL ut sitt innehåll och blir IDL, Intermediate Density Protein, men behåller hela tiden sin ”fettflagga” apoB.

När IDL krympt ner till cirka 25-35 nanometer försvinner alla ”apor” utom apoB och i fortsättningen är det fraktioner av något olika storlek av LDL, LowDensity Lipoprotein. De är fortfarande fett-transportörer om än i liten skala. De första två (kanske tre) fraktionerna av LDL dominerar hos friska och återvinns problemfritt av levern. I bästa fall gör ”vården” viss teoretisk skillnad på de två första och resten, Large Buoyant LDL och Small Dense LDL, men räkna inte med att det ska märkas i ett labbprotokoll.

Blodet är en ”farlig” miljö att vistas i, det är syrerikt och innehåller enkla sockerarter** (monosackarider) som gärna ”klibbar fast”*** vid vadhelst det stöter på, t.ex LDL. Levern ”tappar intresse” för modifierat LDL medan makrofager gör det de är avsedda att göra, tar hand om ”olämpligheter” som cirkulerar, såväl oxiderat som glykerat LDL.

Makrofager som föräter sig på oxiderat och glykerat LDL ger samlingar av skumceller. Vid det här laget vet du att det inte är bra, om inte så repetera!


*) Egentligen bör det heta apoB100, men då det fortsättningsvis inte finns någon förväxlingsrisk skriver man enbart apoB. Det finns stora likheter mellan de två varianterna av apoB, den som pryder kylomikroner är 48% av den längre apoB100 som byggs i levern!

**) Monosackariderna är glukos, fruktos och galaktos. Vanligt vitt socker (sukros) är glukos + fruktos, laktos (mjölksocker) är glukos + galaktos. Stärkelse är långa kedjor av glukos. Fruktos är uppåt 10 gånger mer benäget att försockra sin omgivning! Det är fruktos som ger ”naturlig sötma”.

***) Detta kallas glykering (försockring) när det sker slumpmässigt, glykosylering om enzymer styr hur det sker. Detta sker hos alla, men i högre grad hos diabetiker, där mäter man graden av försockring av röda blodkroppar, måttet anges i mmol/L och kallas i labbrapporter HbA1c.

I föregående inlägg mötte du begrepp som oxLDL samt skumceller.

Skumceller (foam cells) är ansamlingar av ”överviktiga/feta” makrofager som konsumerat (försökt eliminera!) för mycket oxLDL (oxiderat LDL) och stupat på sin post.

Källa: Föregående inlägg.

En samling skumceller i blodkärlens väggar kommer att, om de får växa till, skapa problem. Naturligtvis är det då angeläget att spåra en anledning och försöka eliminera den.

However, the oxLDL hypothesis of coronary heart disease does not get at the root cause, that is, what causes LDL to become oxidised in the first place?

Min tolkning: Hypotesen om oxLDL vid CHD är ofullständig till dess vi förstår vad som gör att LDL oxideras.

KällaOmega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis – James J DiNicolantonio, James H O’Keefe

Vi uppfattar syre som livgivande men inser inte alltid att det även underhåller skogsbränder och rost. På samma sätt kan syre förändra en molekyl så att den ställer till problem, detta kallas oxidation.

It was later discovered that the oxidation of LDL was initiated by the oxidation of linoleic acid contained within the LDL particles. (Ref 13) Indeed, linoleic acid is the most common oxidised fatty acid in LDL. (Ref 14)

Min tolkning: Oxideringen av (lipoproteinet) LDL startade med linolsyra (13), den mest oxiderade fettsyran i LDL (14)

I ett tidigare inlägg berättade jag att lipoproteiner, i detta fall LDL, förändras i innehåll, storlek och yttre kännetecken vilket påverkar dess slutliga öde. Tips: Fundera lite på vad kännetecken på ett lipoprotein kan vara.

Fortsättning följer…


13. Parthasarathy S, Litvinov D, Selvarajan K, et al. Lipid peroxidation and decomposition—conflicting roles in plaque vulnerability and stability. Biochim Biophys Acta 2008;1781:221–31.

14. Jira W, Spiteller G, Carson W, et al. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem Phys Lipids 1998;91:1–11.

Det läkare och andra slarvigt kallar ”kolesterol” omfattar en mängd olika ”farkoster” som gör det möjligt att transportera fettartade ämnen i kroppens vattendominerade miljö, t.ex. lymfa och blod. De består av membran av fosfolipider* och kallas lipoproteiner. I denna artikel gäller det Low Density Lipoprotein (LDL), slarvigt betecknat som ”det onda kolesterolet”.

I vårdsammanhang mäter man aldrig LDL direkt, det blir istället en uppskattning baserad på några besläktade värden och förutsätter att man inte ätit under 10-15 timmar dessförinnan. Självklart märker man då inte av att LDL finns av minst 5, kanske 7 fraktioner (stadier av ”avveckling”) där de två första är nödvändiga och önskvärda medan de övriga 3-5 fraktionerna ger ökande grad av problem.

The low-density lipoprotein (LDL) oxidation hypothesis gained traction during the 1980s because it was noted that in general, native unoxidised LDL does not cause foam cell formation. In other words, LDL had to become oxidised first in order for atherosclerosis to develop.

Min tolkning: Hypotesen om oxiderat LDL formades under åttiotalet när man noterade att ”färskt” LDL inte förorsakade skumceller. Annorlunda uttryckt, LDL måste oxideras för att atheroskleros, åderförfettning, ska inträffa.

KällaOmega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis– James J DiNicolantonio, James H O’Keefe

Skumceller (foam cells) är ansamlingar av ”överviktiga/feta” makrofager** som konsumerat (försökt eliminera!) för mycket oxLDL (oxiderat LDL) och stupat på sin post. Engelska Wikipedia 

Moreover, oxLDL was found to be higher in patients with CAD compared with normal patients and oxLDL was able to better identify patients at an elevated risk of heart disease. (Referenser 7, 8 och 9 nedan)

Min tolkning: Oxiderat LDL var högre hos patienter med CAD (coronary artery disease, kransskärlssjukdom) och kunde bättre identifiera de med förhöjd risk för hjärtsjukdom.

  • De vanliga kliniska metoder som används idag bortser från att LDL finns i flera fraktionen varav två dominerar stort bland friska men får allvarlig negativ konkurrens av de övriga när det kommer till utveckling av CAD.
  • Vad kan vi göra för att driva på produktionen av oxLDL? (Märk att jag formulerar problemställningen ”åtabak”!)

Fortsättning följer…


*) En fosfolipid är till 2/3 fett och 1/3 ett protein. När de ligger intill varandra där de bildas kommer de att bilda krökta membran där proteinsidan vänds utåt mot den vattenrika miljön. Detta bildar lipoproteiner som fylls med varierande innehåll beroende på var de bildas. Till detta fogas även yttre kännetecken på ursprung och destination.

**Makrofag betyder ”storätare” med uppgift är att ”äta upp” t.ex. bakterier men de ger sig även i kast med oxLDL, något som kan bli dem övermäktig.

7. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–94.

8. Holvoet P, Stassen JM, Van Cleemput J, et al. Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease. Arterioscler Thromb Vasc Biol 1998;18:100–7.

9. Salonen JT, Ylä-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–7.

Nu börjar det bränna till men inte värre än att seriöst intresserade kan följa resonemanget. Har du frågor, skriv i kommentarer eller direkt till mig så ska jag försöka svara.

Importantly, linoleic acid concentrations in both serum cholesteryl esters and phospholipid fatty acids are in fact higher in patients with CAD compared with those without CAD coronary artery disease.*

Min tolkning: Koncentrationen av linolsyra (den essentiella omega-6-fettsyran) i både blodets kolesterylestrar (även kolesterolester) samt membran-byggstenen fosfolipider är högre hos personer med hjärtsjukdom (CAD) än friska.

KällaOmega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis:  – James J DiNicolantonio, James H O’Keefe

Kolesterylestrar låter knepigt, men är ändå inte så märkvärdigt. När en fettsyra binder till molekylen kolesterol får vi en kolesterylester. Processen kallas förestring och innebär att en vattenmolekyl avskiljs där sammankopplingen sker. Detta är ett smidigt sätt att leverera en kombo av fettsyra och kolesterol via transportfarkoster, lipoproteiner, i blodet.

Fosfolipider bygger cellmembran på liknande sätt som ovan men där är det ett protein med fosfor som ersätter en av fettsyrorna i en triglycerid (fettmolekyl).

I tabell 1 i fulltexten finner vi att friska i medeltal har 5066 mg/L av kolesterylestrar i blodserum varav 2969 kommer från fettsyran 18:2, alltså linolsyra. Bland de med CAD (coronary artery disease) var totalmängden 7407 mg/L med 4358 mg/L av linolsyra.

Två andra värden i tabellen som sticker ut i absoluta tal är 18:1 (oljesyra ökar från 961 till 1366) samt 20:4 (arakidonsyra ökar från 427 till 688) Oljesyra är en enkelomättad omega-9-fettsyra som kroppen själv syntetiserar men även kommer från t.ex. dietisters favorit, olivolja. Arakidonsyra har sitt ursprung i linolsyra och bildar fortsättningsvis de inflammationsfrämjande prostaglandiner, leukotriener samt tromboxaner.

Again, since linoleic acid cannot be synthesised in the body, this suggests that patients who have heart disease consume more omega-6 linoleic acid than those without heart disease.

Min tolkning: Då vi inte kan syntetisera linolsyra innebär detta att patienter med CHD äter mer omega-6-fettsyror än de friska.

Jag återkommer till arakidonsyra med ”följare”,  vilken inverkan de har i kroppen samt hur ”vården” hanterar dem med mycket vanliga preparat. Med stor sannolikhet har de flesta vuxna använt sådana under kortare eller längre tid. Vet du redan nu vad de kallas?

Fortsättning följer…


*) Schwertner HA, Mosser EL. Comparison of lipid fatty acids on a concentration basis vs weight percentage basis in patients with and without coronary artery disease or diabetes. Clin Chem 1993;39:659–63. Finns kostnadsfritt som fulltext, följ länken och välj först ”Full text” uppe till höger, sedan PDF.

Konkurrens brukar främja utveckling, men inte alltid.

The amount of linoleic acid in adipose tissue, but also in platelets, is additionally positively associated with coronary artery disease (CAD), whereas long-chain omega-3 (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) levels in platelets are inversely related to CAD.*

Min tolkning: Mängden linolsyra i fettväv men även i trombocyter (blodplättar) är relaterat till kranskärlssjukdom medan långkedjigt omega-3 som EPA och DHA i trombocyter visar en omvänd relation.

Både linolsyra (omega-6) och linolensyra (omega-3) är essentiella i avpassade mängder och i rimliga proportioner dem emellan som framgår av meningen efter;

This provides rather compelling evidence that omega-3s protect whereas omega-6 linoleic acid promotes heart disease.

Min tolkning: Detta ger ganska övertygande (förfärlig kombination av ord) att omega-3 skyddar medan linolsyra främjar hjärtsjukdom.

Det råder meningsskiljaktligheter om det är mängden eller balansen mellan fettsyrorna som är viktigast.

Importantly, the increased consumption of omega-6 polyunsaturated fat linoleic acid can reduce omega-3 in the body as it competes with the alpha-linolenic acid for metabolism to longer chain polyunsaturated fats.

Min tolkning: Den ökade konsumtionen av den fleromättade omega-6-fettsyran linolsyra kan minska omega-3 i kroppen då de konkurrerar om den vidare metabolismen till längre fettsyror.

Vare sig linol- eller linolensyra tycks i sig vara viktiga, däremot är de nödvändiga råmaterial att bygga vidare på. För det ändamålet används enzymer, elongaser och desaturaser. 

  • Elongaser adderar en CH22--grupp till en befintlig kolkedja och gör den längre.
  • Desaturaser plockar bort ett par näraliggande H (väteatomer) i en kolkedja och åstadkommer en omättnad, en dubbelbindning.

Dessa enzymer finns i olika variationer, avpassade för att bearbeta exakt rätt plats i kolkedjan** men är gemensamma för både omega-3 och omega-6! Det finns ingen mekanism som styr enzymaktiviteten till den fettsyra vi behöver bäst, den rikligast förekommande tar fler platser i kön oavsett om det är till vår nackdel. Om man äter onödigt mycket av omega-6 rika fetter kommer de att resultera i ett överskott av inflammationsfrämjande ämnen.

Jag återkommer till dem i senare avsnitt.


*) Hodgson JM, Wahlqvist ML, Boxall JA, et al. Can linoleic acid contribute to coronary artery disease? Am J Clin Nutr 1993;58:228–34.

AbstractThe adipose tissue concentration of linoleic acid was positively associated with the degree of coronary artery disease (CAD) in a cross-sectional study of 226 patients undergoing coronary angiography. Linoleic acid concentration in adipose tissue is known to reflect the intake of this fatty acid. These results are therefore indicative of a positive relationship between linoleic acid intake and CAD. The platelet linoleic acid concentration was also positively associated with CAD. After confounding factors were allowed for, the eicosapentaenoic acid concentration in platelets was inversely associated with CAD for men, and the docosapentaenoic acid concentration in platelets was inversely associated with CAD for women; results consistent with several other studies that suggest that fish, and omega-3 fatty acids derived from fish and fish oils, can beneficially influence macrovascular disease.

**) Fettsyror har två ”ändar”, metyländen (-CH3) som även kallas omega-änden, samt karboxyländen (-COOH). Elongaser och desaturaser ”räknar” från karboxyländen och bryr sig därför inte om de bearbetar omega-3 eller omega-6.

Åsikter om fetter varierar stort, det är svårt för att inte säga omöjligt att fånga skiljaktigheter på ett överskådligt sätt.

  • Hur mycket ska/kan man äta?
  • Vad kännetecknar mättade, enkelomättade och fleromättade fetter?
  • Vad förenar och skiljer animaliska och vegetabiliska fettkällor?
  • Vilka fetter gör din egen kropp, av vad och varför?

Jag vill påstå att de som de som rekommenderar ”en balanserad mängd nyttiga fetter” utan att närmare precisera vad det kan innebära förmodligen har en väldigt skakig uppfattning om ämnet. Här presenterar jag en text som tar sig an en utomordentligt viktig aspekt på en fleromättad fettsyra från främst vegetabiliska källor.

The intake of omega-6 vegetable oils, particularly soybean oil, began to increase in the USA starting in the early 1900s at a time when the consumption of butter and lard was on the decline.* This caused a more than fold increase in the intake of linoleic acid, the main omega-6 polyunsaturated fat found in vegetable oils, which now makes up around 8% to 10% of total energy intake in the Western world.

Min tolkning: Konsumtionen av vegetabiliska oljor med omega-6-fettsyror, speciellt sojaolja, ökade i USA under det tidiga 1900-talet när man minskade på smör och ister. Detta ledde till en ökning av linolsyra, det dominerande omega-6-fettet i vegetabiliska oljor.

Källa: Jira W, Spiteller G, Carson W, et al. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem Phys Lipids 1998;91:1–11.

Noterat: Ett par oklarheter i citatet ovan:

  • Precisering av hur mycket konsumtionen ökade (”…more than fold increase…”) saknas, där borde ha funnits en sifferuppgift.
  • Den andra oklarheten har jag valt att inte tolka utan kommenterar här istället. Avser de 8-10% i den engelska texten 1) linolsyra, 2) fleromättade fetter eller 3) vegetabiliska oljor?

Nedgången för smör och ister var en naturlig följd av ökningen av ”hittepåfett” som margarin. Till en början byggde margariner på animaliska fetter men kemister fann olika metoder att öka det vegetabiliska innehållet. Detta gav industrin bättre ekonomi, dessutom utrymme för reklam. En bestående följd av detta är att fetter/oljor med vegetabiliskt ursprung numera används i allt större utsträckning, inte utan följdverkningar.

A systematic review of studies measuring the changes in linoleic acid concentration in subcutaneous adipose tissue in the USA revealed an approximate 2.5-fold increase in linoleic acid increasing from 9.1% to 21.5% from 1959 to 2008.**

Min tolkning: En genomgång av studier i USA visar en ökning av linolsyra i underhudsfett från 9.1 till 21.5% mellan 1959 och 2008.

Tja, vad kan det innebära? Är det bra eller dåligt, något att bry sig om?

Importantly, the concentration of linoleic acid in adipose tissue is a reliable marker of intake as the half-life of linoleic acid is approximately 2 years in adipose tissue. The authors of the study also noted that the increase in adipose tissue linoleic paralleled the increase in the prevalence of diabetes, obesity and asthma.**

Min tolkning: ”Halveringstiden” för linolsyra i fettväv är ungefär 2 år och utgör därför ett pålitligt mått på konsumtionen. Författarna av studien noterade att ökningen av linolsyra i fettväven följde parallellt med förekomsten av diabetes, fetma och astma.

Märk väl att linolsyra är en av två essentiella fettsyror, vi kan inte själva åstadkomma dem utan allt måste komma via maten! Vi drar gärna slutsatsen att något livsviktigt blir allt bättre ju mer man äter men det är långt ifrån sant, något DiNicolantio och O’Keefe summerarOmega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis

Fortsättning följer…


*) Rizek RL, Friend B, Page L. Fat in todays food supply—level of use and sources. J Am Oil Chem Soc 1974;51:244–50.

**) Guyenet SJ, Carlson SE. Increase in adipose tissue linoleic acid of US adults in the last half century. Adv Nutr 2015;6:660–4.