Är du diabetiker typ 1 eller av andra skäl tvungen att använda insulin har du alldeles säkert hört talas om och troligen varnats för svältketoner. Innan du fortsätter läsa så föreslår jag ett kort uppehåll där du funderar något över vad ordet svält innebär.

När tarmen har gjort slut på sitt kolhydratinnehåll, t.ex. efter sömn eller fasta, börjar levern leverera ut redan lagrad energi i diverse kombinationer av fett, ketoner och glukos.

Om ketonerna då blir mätbara kallar diabetesläkarna och -sköterskor dem ”svältketoner” och ger järnet för att skrämma dig. Märker du hur absurt det låter, ”Svält”? Det är istället  en fullständigt önskvärd och normal reaktion när kroppen anpassar sig till energiförsörjning från egna resurser. Detta sker hos friska i ett samspel främst mellan hormonerna insulin och glukagon.

Hos diabetiker typ 1 är den egna insulinproduktionen starkt nedsatt eller obefintlig och glukagonet, som hos friska tar order från insulin, kan då få fritt spelrum om man missar att injicera en adekvat mängd insulin. Detta leder till en okontrollerad ketonproduktion och frisättning av glukos ur leverglykogen, långt över det kroppen klarar att använda. Detta kallas DKA (diabetisk ketoacidos), ett okontrollerat energiöverskott, raka motsatsen till ”svält”. Den springande punkten och egentliga orsaken till DKA är total insulinbrist!

Vill man prompt använda ordet ”svält” när det gäller diabetiker typ 1 så passar det bättre vid insulinöverskott. Det leder till hypoglykemi, lågt blodsocker, samtidigt som leverns förmåga att utsöndra glukos och fett/ketoner är bra nära noll på grund av högt insulin.

Därför är det långt rimligare att kalla insulinförorsakad hypoglykemi svält då den eliminerar närapå alla energiresurser i blodet.


Om ketoner, för den misstänksamme,  Unga riskerar hälsan genom att minska insulin,
Euglykemisk ketoacidos hos diabetiker typ 1,  Ett uns av fettkemi i anslutning till muskel- och fettceller Juice räcker inte hela natten för mig som har diabetes typ 1Insulin och ”säkerhetsmarginal” till DKA

Annonser

Djurmodeller av typ 1 diabetes och sjukdomen hos människor har stora skillnader. Det finns fler än 150 olika sätt att bromsa eller till och med bota ”typ 1 diabetes” hos möss. Inte ett enda hos människor.

Källa: Diabetesportalen.se

Intressant nog har man tillfogat fotnoten som jag citerar ovan. IMHO är det ett av de allra bästa konstateranden jag någonsin läst på diabetesportalen.

Diabetes typ 1 är ingen vanlig åkomma, vare sig hos människor eller möss. Den innebär en autoimmun reaktion som slår ut hela eller större delen av den egna insulinproduktionen genom att immunförsvaret attackerar dem. För att studera den i sin naturliga miljö krävs därför både många individer och lång tid för att få statistiskt pålitliga utfall. Du kan därför utgå från att inget företag med ambitioner att tjäna pengar på att forska fram vacciner skulle satsa på ”naturlig diabetes typ 1” vare sig hos människor eller ens möss.

Inom kort planerar det amerikanska företaget Provention Bio att tillsammans med det finska företaget Vactech Ltd ta fram och testa ett liknande vaccin i människa.
Studien har finansierats av Tekes och Barndiabetesfonden. Det Tekes-finansierade konsortium som forskarna ingår i, Therdiab, innefattar utöver Karolinska Institutet och universitetet i Tammerfors även flera finska bioteknikföretag, däribland Vactech Ltd.

Det är etiskt fullständigt orimligt att framkalla tillstånd som liknar diabetes typ 1 hos människor men försvarbart när det gäller möss. Det finns säkert ett stort antal metoder att göra det och många av dem har säkert använts i de ”…fler än 150 olika sätt att bromsa eller till och med bota ”typ 1 diabetes” hos möss.”

Såhär tänker jag, kanske även den som lade till fotnoten: Alla botemedel eller bromsmediciner i musförsöken motverkar sannolikt de metoder som provocerar fram ”diabetes typ 1” hos mössen snarare än de naturliga autoimmuna reaktionerna som resulterar i ”äkta” diabetes typ 1. Den som är påläst när det gäller botade möss med äkta diabetes typ 1 är välkommen att länka till sådana studier.


Studien i fulltext: https://link.springer.com/content/pdf/10.1007%2Fs00125-017-4492-z.pdf

Vilken typ av bakterier en cancerpatient har i tarmarna kan påverka hur hen svarar på behandlingen immunterapi. Det visar forskning på patienter med lung-, hud- eller njurcancer som publiceras i tidskriften Science, rapporterar SVT Vetenskap.

Forskarna kartlade vilka bakterier som fanns i patienternas tarmar, och kunde se att de som svarade bäst på behandlingen var de som hade en varierad tarmflora och mycket av särskilt bra bakterier.

Källa: Västerbottens-Kuriren

När den Västerländsk civilisationen ursprungligen trängde fram i jungfruliga områden var det inte bara nya levnadsvanor och mat man förde med sig utan även sjukdomar inklusive cancer. De medföljande läkarna noterade att det från början var i princip cancerfritt, men redan inom ett eller ett par årtionden började den dyka upp. Till skillnad från många andra sjukdomar är cancer, så vitt vi vet, inte smittsamt och det vi idag skyller på ”miljögifter” och föroreningar var knappast spridda ens en bråkdel mot idag. En av de faktorer som påverkar cancer, kanske även utlöser, kan därför vara den mat vi äter.

Enligt artikeln menar Ola Winqvist, professor och överläkare i klinisk immunologi vid Karolinska Institutet, att ”Det här visar på ett övertygande sätt att tarmfloran är viktig för att cancerbehandlingen ska fungera, och vi börjar förstå vilka typer av bakterier som ger god effekt. Nu måste vi undersöka hur vi kan påverka tarmfloran så att vi kan rädda våra patienter…”

Min åsikt är att det är tänkbart och rimligt att vi med dålig mat, snabbt eller på sikt, kan påverka, utarma och fördärva en tarmbakterieflora. Tarmbakterier, ”goda” såväl som ”onda” och vilka som helst däremellan lever mycket korta liv och i intensiv konkurrens. De som får gynnsamma levnadsomständigheter kan och kommer att ta större ”marknadsandelar” på andras bekostnad, kanske eliminera några helt. Om detta kan ske känns det rimligt att utvecklingen kan ”tippas” åt andra hållet med bra mat samt att man återintroducerar ”goda” bakterier som eventuellt saknas.

Onda”, ”goda” och neutrala bakterier är spelare där fördelningen dem emellan bestäms av miljön de lever i. Man behöver knappast vara en särskilt framstående tänkare för att inse att mat och dryck vi stoppar i oss vanligen hamnar i och utgör tarmflorans arbetsmaterial och drivkälla.

Den egentliga frågan, som artikeln inte ens snuddar vid, är om olämplig bakterieflora drar med sig cancer eller om dåliga matvanor ligger bakom både cancer och suboptimal tarmbakterieflora.

Jag har inte läst den bakomliggande studien och vet därför inte om det finns tolkningsfel mellan skribenten och den bakomliggande studien.

 

”Förbränningen” hos en rejält överviktig/fet är nog lika stor eller till och med större än hos en smärt som tränar rimligt mycket. Jag tror inte att normalviktiga eller smärta kan föreställa sig hur fysiskt ansträngande det är att 24/7 bära en viktväst som väger 20-30-40 kg eller mer.

Jag tänker inte avråda från icke belastande fysisk träning, men tror att det som bibehåller övervikt/fetma är att man ständigt förnyar den genom att man har avsevärd förbättringspotential i sina matvanor. I klartext; man äter rejält fel!

LCHF fungerar bland annat genom att du äter/metaboliserar (förbränner) mer fett. Det låter kontraintuitivt, men på något sätt måste du ”lära” din kropp att metabolisera fett, det är enda sättet att utnyttja det du redan bär på. Se fett i maten som ett slags ”träningsredskap”. Med tiden, när din kropp är ”certifierad fettförbrännare” och du fortfarande har fettväv i överskott, så kan/bör du dra ner på mängden.

Att koncentrera sig på lågkalorikost låter logiskt, men brukar spricka på att den åtföljs av hunger, ibland fullständigt oemotståndlig. Under vissa omständigheter, t.ex. påtvingad svält, i kliniska experiment under strikt övervakning eller med GBP (magkirurgi) kan det fungera. Märk väl att många koststudier jämför ad libitum LCHF (ät så mycket du vill) och alternativ med kaloribegränsning. Vanligen brukar resultaten med LCHF vara i paritet med eller bättre än de andra.

Med lågkalorikost men en kropp som inte gärna förbränner fett kommer den att dra ner på förbrukningen istället, något du definitivt inte vill. Om och när du faller för matfrestelser efter att ha ”svältbantat” är risken stor att du går upp i vikt, jojobantning. TV-s freak show Biggest Loser visar otaliga exempel på detta.

Mina förslag är att lära din kropp att använda fett, med tiden kan du ändra dina ätmönster till 5:2, 16:8 och dygnsfasta (googla för mer info). Till detta kan du naturligtvis foga fysisk träning, men dess verkan på just viktnedgång är tveeggad, sannolikt ökar din aptit. Dessutom tar det lång tid att träna bort det som tar minuter att ”unna sig”.

Du kan ta del av mängder av erfarenheter i facebookgrupperna Smarta Diabetiker och Smarta diabetikers recept.

Albert Einstein College of Medicine of Yeshiva University har funnit svar på en av biologins mest fundamentala frågor. Deras upptäckter kan leda till nya strategier att behandla fetma och de sjukdomar som den leder till.

Så optimistiskt inleds en några år gammal (2007) artikel i Science Daily. Man har identifierat gener som ansvariga för att lagra fett i fettceller. 

Scientists had previously identified the genes responsible for synthesizing fat within cells. But the genes governing the next step–packaging the fat inside a layer of phospholipids and proteins to form lipid droplets–have long been sought, and for good reason.

Min tolkning: Forskare har identifierat gener som är ansvariga för att syntetisera fett inuti celler. Nästa steg – att ”förpacka” dem i små fettdroppar – har länge sökts, detta med goda skäl.

Grundforskning, att lära sig någots innersta väsen, kan ligga långt från dagens primära behov men tror man sig ana en kruka med guld vid regnbågens slut så är det en stark drivkraft. Genom att studera dessa lipiddroppar tänker man sig skapa preparat som skall förhindra fettbildningen. Jag har inte läst fulltexten och känner därför inte forskarnas intentioner, om det är genuin grundforskning eller om förhoppningen främst gäller nyskapande fetmabehandling. 

”These lines of evidence supported our conclusion that FIT genes are necessary for the accumulation of lipid droplets in cells,” says Dr. Silver. ”Now that we’ve identified the genes and the proteins they code for, it should be possible to develop drugs that can regulate their expression or activity. Such drugs could prove extremely valuable, not only for treating the main result of excess lipid droplet accumulation–obesity–but for alleviating the serious disorders that arise from obesity including type 2 diabetes and heart disease.”

Visst låter det bra? Kanske till och med lite för bra?

Så här tänker jag:

1) Blodet bör normalt inte  transportera mer blodsocker än 3-5 gram samtidigt (”fasteblodsocker”). Redan ett par gram utöver detta antyder diabetes.

2) Överskottsenergin lagras i ”närlager” (glykogen, max 2000 kcal) eller fett i närmast obegränsad omfattning.

3) När möjligheten att lagra undan energi ur blodet som fett försvinner genom detta drömpreparat, vart skall det då ta vägen?

Om vi bekymrar oss för de så kallade ”blodfetterna”, hur skall det bli i framtiden? Redan nu är TG (mätvärdet på  lipoproteinet VLDL som bär majoriteten av det egenproducerade fettet i blodet) hos kolhydratätare förhöjda. Hur skall det då bli i framtiden då inte den lagrings- och transportmekanismen får vara ifred? Den skyddar ju kroppen mot skadliga effekter av den mat du äter.

Ironiskt menat förslag, dock med en liten kärna av allvar: Skapa istället ett preparat med en slags TG-antabusfunktion. Det skall fungera så att man mår illa när man äter sådant som gör att TG stiger.

Allra lättast kommer man då att slippa undan med LCHF. Och det fungerar redan nu, behövs inga nya preparat.

With all its hustle, bustle, concrete, and congestion, they say New York City changes people. And that may be true, but according to a new preprint study posted on bioRxiv, urban life is also changing the city’s mice—right down to their very genes. Mice collected from around the city showed changes in their RNA in genes involved in digestion and metabolism relative to their country counterparts, New Scientist reports. Among these genetic changes the scientists found one involved in the production of omega-3 and omega-6 fatty acids, mirroring a similar change in humans that cropped up around the time our species switched from a hunter-gatherer lifestyle to one based on agriculture. Like humans who consume high quantities of fat, the city mice also showed signs of enlarged livers and genetic changes associated with nonalcoholic fatty liver disease, results the researchers speculate may be from all the human fast food in their diets.

Min tolkning: New York City förändrar människor, numera även visat för möss. Möss som fångats visar förändrat RNA i gener som är associerade till ämnesomsättningen.

Sista meningen är jag lite mer noggrann med: Som hos människor som äter stora mängder fett visar stadsmössen tecken på förstorade levrar och genförändringar som associeras till NAFLD, Non Alcoholic Liver Disease, fettlever som ej beror på alkoholkonsumtion. Forskarna spekulerar i att det beror på all snabbmat som de äter.

Källa: sciencemag.org

Vilket är ditt spontana första intryck av detta? Kan det bygga på följande komponenter:

  • Fet mat
  • Genförändringar
  • Fettlever
  • Snabbmat

Kanske kombinerat såhär: Möss som äter människors feta snabbmatrester får fettlever och genförändringar? Det är min första känsla, du kanske har en annan och mer nyanserad bild.

Man kan börja fundera med många olika ingångar till detta, jag väljer att börja med ”genförändringarna”. DNA är vår arvsmassa, en lång spiralformad struktur som finns i varje cellkärna. Givet att vi inte är sjuka så är denna arvsmassa identisk i varje cell oavsett var i kroppen den än är belägen. Vi har alltså ingen specialiserad ”leverDNA”, ”bukspottkörtelDNA” eller något annat.*

DNA är en slags ”ritning” över alla olika celltyper och strukturer som förekommer i kroppen och ligger till grund för att bilda t.ex. hormoner och enzymer som varje situation kräver. Eftersom myriader av sådana processer ständigt pågår i de enskilda cellerna och DNA bara finns i ett exemplar i cellkärnan så kan man inte använda ”originalritningen” utan förenklade kopior, RNA, istället. De nyproduceras allt efter behov, ibland med små justeringar. Detta kallas epigenetik och påverkas av miljön där maten är en faktor.

Man finner att stadsmössens RNA i vissa stycken är annorlunda än lantisarnas. Blir du förvånad?

Sedan är man snabb att döma stadsmössens mat som i första hand ”fettrik”. Må så vara, men ännu mer övergripande så är den industriproducerad snabbmat med mängder av hitte-på-ingredienser och annat som en rural frigående lantmus sannolikt aldrig skulle äta så stora mängder av.

Min slutsats är att artegen mat är bättre än industriproducerad snabbmat. Åtminstone för möss.


*) Ett viktigt undantag är att cellernas mitokondrier, strukturer som konverterar det vi äter till energi som celler förstår att använda. De har ett eget mitokondrie-DNA.

 

”Jag äter precis det jag vill och balanserar med insulin. Det är så kroppen själv gör, insulin är ett ju naturligt hormon!”

Du som läser om insulinbehandlad diabetes har alldeles säkert hört eller läst påståenden med den innebörden. Det låter fullständigt logiskt och övertygande men låt oss för säkerhets skull fundera igenom det en eller flera vändor.

När vi äter mat som ökar mängden blodsocker kommer friska människors bukspottkörtel att öka produktionen och frisättande av insulin. Ja, just öka, inte börja!

Bukspottkörteln innehåller mängder av små samlingar av celler, langerhanska öar.

  • I dessa finns betaceller som producerar insulin, mäter blodsocker och släpper ut insulin när blodsockret är för högt.
  • Där finns även alfaceller som producerar hormonet glukagon med i stort motsatt verkan som insulin. Alfacellerna har ingen egen förmåga att mäta blodsocker eller något annat i blodet utan tar order från insulinet när det passerar. Insulin dämpar glukagonproduktionen.
  • Insulin och glukagon är i mycket varandras motsatser men samarbetar väl genom att förse blodet med energibärare ur tillgängliga resurser. Dit hör naturligtvis mat man äter men även ur kroppens egna lager av fett, glykogen samt aminosyror från protein.

För den som är intresserad av detaljer föreslår jag  A reappraisal of the blood glucose homeostat which comprehensively explains the type 2 diabetes mellitus–syndrome X complex – Johan H Koeslag, Peter T Saunders, and Elmarie Terblanche

The human islets of Langerhans contain glucagon-secreting α-cells, insulin-secreting β-cells and somatostatin-secreting D-cells.

Min tolkning: Langerhans cellöar innehåller alfaceller som avger glukagon, betaceller som avger insulin samt deltaceller som avger somatostatin (har en balanserande effekt).

These cells are characterised by membrane specialisations involving tight junctions, desmosomes and gap junctions. Molecules smaller than 1000 Da can move from the cytoplasm of one cell to that of another through the gap junctions without entering the intercellular space.

Min tolkning: Dessa celler är tätt kopplade till varandra och små molekyler kan ”tunnlas” direkt utan att passera mellanrum mellan celler.

Diabetiker av alla schatteringar kännetecknas av nedsatt förmåga att hantera och därmed utnyttja glukos i blodet, blodsocker, men av olika orsaker.

It is now well established that the β-cells are glucose sensitive. Intense investigation into the molecular mechanism by which this is accomplished indicates that it is the rate of glucose metabolism, and consequent cytosolic ATP concentration in the β-cells, which is responsible for generating the signal for insulin secretion.

Min tolkning: Det är väl känt att betaceller är känsliga för blodsocker. Glukosen ökar ATP*-produktionen i betacellen och aktiverar insulinproduktion och -utsöndring.

Glukosupptag och därmed även förutsättningen för betacellens aktivitet sker enligt följande:

Briefly, pancreatic β-cells express GLUT2 glucose transporters whose relatively low affinity for glucose ensures that the rate of glucose entry into the cell is proportional to the extracellular glucose concentration, at least in the physiological range.

Min tolkning: Betaceller tar in blodsockret via glukostransportören GLUT2. Den reagerar på förhållandevis låga glukoskoncentrationer vilket innebär att den levererar in glukos i proportion till blodsockernivån.

Genom att utnyttja skillnader mellan två olika glukokinaser (enzymer) uppstår en reglerande ”flaskhals” för den vidare omsättningen av glukos.

For any given β-cell, insulin biosynthesis appears to be all or none. Glucose is a well-known stimulus of proinsulin biosynthesis.

Min tolkning: För vilken som helst enskild betacell förefaller insulinsyntesen vara digital, antingen av eller på.

I försök med enbart betaceller ökar närvaron av glukos produktionen av proinsulin (ett förstadium) 25-faldigt.

Glucose produces sudden transitions, in individual β-cells, between basal and raised intracellular Ca2+ concentrations. The thresholds at which these transitions occur differ in different cells.

Min tolkning: De enskilda betacellernas insulinfrisättning triggas individuellt och vid olika nivåer.

Fortsättningsvis kan vi observera tydliga skillnader mellan endogent (eget) och exogent (utifrån tillfört) insulin.

  1. Egenproducerat insulin har den allra högsta koncentrationen inne i de langerhanska öarna, beta- och alfaceller förbinds via de tidigare nämnda tight junctions och överföringen av information till alfacellerna sker snabbt och effektivt. Då varje enskild betacell fungerar autonomt, på egen hand, kommer det även i viloläge att finnas de som producerar små mängder insulin trots att det inte ”behövs”. Den låga mängden är, åtminstone hos friska, tillräcklig för att dämpa alfacellernas glukagonproduktion. Effekten blir att bukspottkörteln har en ”beredskapsproduktion” av både insulin och glukagon, kroppen är därmed beredd på alla olika eventualiteter och kan anpassa sig utan problem.
  2. När insulinet hamnar i blodet späds det snabbt ut till en bråkdel av den ursprungliga koncentrationen och når snabbt levern där 80% av alla kroppens insulinkänsliga** celler finns. När en insulinmolekyl når en receptor ”sugs” den in när receptorn drar sig in i cellen. Det gör att antalet tillgängliga insulinmolekyler minskar ytterligare när de kvarvarande följer blodcirkulationen ut i kroppen.
  3. Den drastiskt sjunkande koncentrationen av endogent insulin ute i blodet skiljer sig därför avsevärt från den hos insulinbehandlade. Hos de senare sprids insulinet i motsatt riktning från injektionsstället i fettväv, vidare genom små kapillärer och till övriga blodomloppet och slutligen i någon utsträckning till alfacellerna i bukspottkörteln.

Förutom att syntetiska insuliner är manipulerade för att bli patenterbara (den viktigaste egenskapen för tillverkare) och uppfylla vissa egenskaper (viktigast för tillverkarens marknadsföringsavdelning) så skiljer sig alltid koncentrationsgradienten mellan eget och injicerat insulin. Injicerat insulin är därför inte naturligt, vare sig i uppbyggnad, tillförsel eller koncentrationsgradient. Den som påstår annat har förbättringspotential i sitt vetande. Ett bra sätt att minska kravet att ”balansera kolhydrater med insulin” är LCHF i kombination med i första hand långsamverkande insulin, det senare mest för att hålla alfacellernas glukagonproduktion inom en lagom nivå.

Ta aktiv del i skötseln av ”din” diabetes, tänk, ät och mät. Bli medlem i facebookgrupperna Smarta Diabetiker och Smarta Diabetikers recept för att få råd och tips med LCHF som en bärande idé i hanteringen av diabetes av alla schatteringar.


*) ATP är den helt dominerande av kroppens energivalutor. Var och en representerar oerhört lite energi och vi omsätter mellan halva och hela kroppsvikten av adenosintrifosfat per dygn.

**) Långt färre av våra celler än vi gärna tror är insulinkänsliga, faktiskt bara ungefär 1% av alla! Av dessa finns 8/10 i levern och 2/10 i fettväv medan de stora muskelcellerna antalsmässigt är i försvinnande minoritet.  Märk väl att det inte säger något om fördelningen av insulinreceptorer och de GLUT4 som medierar insulinreglerad glukostransport.