Arkiv för kategori ‘fermentering’

The development of the intestinal ecosystem is crucial for many gastrointestinal functions and body health. The intestinal ecosystem essentially comprises the epithelium, immune cells, enteric neurons, intestinal microflora, and nutrients.

Min tolkning: Utvecklingen av tarmarnas ekosystem är avgörande för mag- och tarmkanalens funktion och vår hälsa. Ekosystemet utgörs av dess avgränsningar (epithelium), immunceller, nervsystem, mikroflora och näringsämnen.

Källa: Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

Börja gärna med att ögna igenom gårdagens inledning om denna studie.

… a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke.

Min tolkning: …ett växande antal studier visar att n-butyrat skyddar mot och motverkar tjock- och ändtarmscancer. Utanför tarmarna ger butyrat möjliga användbara effekter mot många hälsoproblem, inkluderande en genetisk störning i de röda blodkroparna, genetiska metabola sjukdomar, avvikande blodlipider, nedsatt insulinsvar och stroke till följd av blockerat  blodflöde i hjärnan.

I tarmarna spelar mycket kortkedjiga fettsyror, SCFA (Short Chain Fatty Acids) en avgörande roll. Syntolkning: Bilden visar tjocktarmens olika delar.

largeintestine

In this context, short-chain fatty acids (SCFAs), produced by intestinal microflora, represent a clear example of the importance of the intestinal ecosystem. SCFAs are organic acids produced by intestinal microbial fermentation of mainly undigested dietary carbohydrates, specifically resistant starches and dietary fiber, but also in a minor part by dietary and endogenous proteins.

Min tolkning: SCFA produceras av (tjock-)tarmens mikroflora. De är organiska syror som bildas genom fermentering av osmälta kolhydrater från maten, speciellt av resistent stärkelse och fibrer, i mindre utsträckning av proteiner från mat eller de som avges av kroppen själv.

SCFA som bildas är kedjor av ett varierande antal kol-, väte- samt två syreatomer. Ättiksyra har 2, propionsyra 3, n-butansyra 4 och valeriansyra 5 kolatomer. De tre första utgör ungefär 60, 25 resp. 15% av koncentrationen i colon (tjocktarmen).

I början av colon där tunntarmen ansluter är miljön lite surare vilket gynnar de bakterier som producerar n-butyrate. De är Gram-positiva* anaeroba** bakterier.

Butyrate is the major energy source for colonocytes and is involved in the maintenance of colonic mucosal health[1]

Min tolkning: n-butyrat är den största energikällan för colonocyter som utgör tjocktarmens vägg och underhåller även dess slemskikt.

Fortsättning följer

Tidigare i ämnet: Nytta av korta fettsyror i tjocktarmen, del 1


*) Gram var en dansk kemist som fann en metod att färga bakterier. De som behöll färgen även efter en tvättprocedur reagerade positivt på behandlingen och kallas därför Grampositiva.  Läs mer om Gramfärgning här.

**) Anaeroba bakterier lever i en ytterst syrefattig miljö.

[1] Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27: 104-119

Kakexi innebär förlust av kroppsmassa som inte kan motverkas även om man försöker äta mer. Kakexi är en vanlig följd av såväl cancer som autoimmuna sjukdomar samt ett antal andra åkommor inklusive drogmissbruk och innebär allvarligt nedsatt allmäntillstånd som leder till trötthet, avmagring och orkeslöshet. Här en studie som handlar om hur ketoner och ketogen kost motverkar såväl cancer som kakexi.

Ketoner cancer kakexi

Background: Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy.

Min tolkning: Cancer kännetecknas av en avvikande ämnesomsättning. För att tillfredsställa det ökande energibehovet utsöndrar tumörceller ämnen som påskyndar muskel- och fettnedbrytning hos cancerpatienter, något som kallas kakexi. Detta är den primära dödsorsaken hos nära 20% av alla cancerfall. Mekanismen bakom cancerrelaterad kakexi samt vård som fokuserar på kakexi är oklar. Ketogen kost, strikt LCHF, som ökar mängden ketoner (acetoacetat, β-hydroxybutyrat och aceton) är en alternativ energikälla. Tankar finns att ketogen kost leder till grundläggande förändringar i ämnesomsättningen. Med hänsyn till hur cancer ändrar ämnesomsättningen ställde vi upp hypotesen att ketogen kost kan minska glukostillflödet till cancerceller och minska kakexi och på så sätt bli en effektiv behandlingsmetod.

KällaMetabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia – Cancer & Metabolism  Fulltexten är fritt nedladdningsbar via länken.

Gemensamt för cancerceller är att dess mitokondrier är dysfunktionella, de gör inte sitt jobb. I cellers cytoplasma förbearbetas glukos till pyruvat som transporteras in i närmaste mitokondrie för vidare bearbetning till kroppens grundläggande energivaluta, ATP. Det första stegen krävs en investering av 2 ATP för att starta processen som återför 4 ATP, netto ger detta 2 ATP. Med fungerande mitokondrier kan ytterligare 30 – 36 ATP utvinnas via en lång och komplicerad process, men i cancercellen är det tvärstopp, mer än 2 ATP blir det inte.

När pyruvatet inte används bildas ett överskott av mjölksyra och då cancervävnader har notoriskt usel blodförsörjning fraktas den inte bort i tillräcklig omfattning. Detta gör att tumörvävnad får ett lägre pH (är ”surare”) vilket ständigt feltolkas som att cancer ”trivs” och gynnas av en sur miljö.

  • Cancerceller är notoriskt ensidiga i sitt kostval, ratar 95% av energin från glukos vilken fermenteras till laktat (mjölksyra), den dåliga sophämtningen (litet blodflöde) hinner inte med och miljön blir försurad. Totalt sett blir effekten att cancerceller kräver många gånger högre glukostillförsel för att kompensera för de skadade mitokondrierna.

Observera: Studien är av etiska och praktiska skäl gjord på möss samt vävnadsprover i ”provrör”. Kan den då alls vara relevant för människor? Levande organismer delar väsentliga byggstenar och funktioner. Skillnaden är uppenbar om man jämför en mus och en människa sida vid sida, men när man går ”närmare” blir likheterna allt större. Djur- och provrörsstudier kan vara hypotesgrundande, skapa nya tankebanor, att bearbeta i studier på mänskliga vävnader. En fördel med djurförsök såväl in vivo (på levande djur) och in vitro (i ”provrör”) är att man kan detaljstudera resultat och händelseförlopp, något som kan vara svårt bland människor.

Alla studier behäftas av diverse fel och när det gäller människor är det svårt att hålla kontroll över alla relevanta parametrar. Folk kommer och går, gör inte som de blir tillsagda och friserar sina utsagor av diverse skäl (av glömska eller rena lögner). Men de är människor, vilket känns tillförlitligt. Djur, å andra sidan, kan hållas under betydligt striktare kontroll. Sedan gäller förstås att ställa ”rätt” frågor och mäta ”rätta” parametrar. Men djur är inte människor vilket sänker trovärdigheten.

  • Våra kroppar anpassar sig effektivt till förändrade behov, oavsett om de är önskvärda eller ej. Då cancerceller har ett uttalat behov av glukos kommer metabolismen att anpassa sig och effektivisera ”glukosutbudet”. Kommer det inte in via maten sker det till stor del via nedbrytning av glukogena* aminosyror från proteiner. Dessa kommer huvudsakligen från muskler, men det finns ingen garanti att hormoner, enzymer eller proteiner i bindväv eller liknande blir opåverkade, i vart fall är det sannolikt att deras normala omsättning påverkas negativt. Detta är förmodligen en avsevärd del av kakexins nedbrytande effekter.
  • Alla fetter består av tre fettsyror sammanbundna av en molekyl glycerol. Glycerol är en återvinningsbar ”organisatör” av fettsyror till fettmolekyler och återvinns efter varje användning i levern till glukos. Energibidraget från dessa är litet men inte obetydligt.
  • Mjölksyran från cancercellen återvinns också till ny glukos i levern via Cori-cykeln, ytterligare en ineffektiv process.

Så ett aber:

Tumor cells also have alterations in the metabolism of glutamine, a nitrogen source and arguably the most significant metabolite precursor for tumor cells after glucose.

Min tolkning: Tumörceller har också en förändring i omsättningen av glutamin, en glukogen aminosyra, näst glukos den mest betydande energikällan för tumörceller.

Detta är grunden för en vanlig invändning mot att kolhydratrestriktion skulle vara en framkomlig väg att motverka och dämpa cancerutveckling. Vi skall senare se hur ketogen kost påverkar glutaminomsättningen vid cancer.

Ketogenic diets possess anticonvulsant and antiinflammatory activities. It has also been proposed that a ketogenic diet treatment results in systemic metabolic changes like increased glucose tolerance, reduced fatty acid synthesis, and weight loss.

Min tolkning: Ketogen kost minskar kramper och är antiinflammatorisk. Hypoteser finns att ketogen kost påverkar ämnesomsättningen mot ökad glukostolerans, minskad fettsyrabildning och viktminskning.

Då ketoner är lätt lösliga i blodet kan de även försörja merparten av hjärnan trots att den ligger skyddad bakom blod-hjärnbarriären som anses hindra energitillförsel förutom den från glukos. Räknat per vikt innehåller ketoner dessutom mer energi än glukos, detta då de för med sig mindre syre, de är mindre oxiderade.

…a ketogenic diet may act against the cancer-induced cachexia while causing minimal side effects as previously it has been shown that a 2–7-mM ketone body concentration can be achieved safely without giving rise to clinical acidosis.

Min tolkning: En ketogen kost kan motverka kakexi med små sidoeffekter då man tidigare visat att det går att nå 2-5 mmol/L ketoner utan risk för acidos (”försurat blod”)

Låt oss titta på några av deras resultat.

Ketone bodies were observed to inhibit cell survival in a dose-dependent manner.

Min tolkning: Ketoner minskade (cancer)cellöverlevnad på ett dosberoende sätt.

Men kunde detta slå mot ”friska” celler?

We observed no significant effect on survival of these cells under treatment with ketone bodies.

Min tolkning: Vi såg ingen effekt på överlevnaden hos dessa (friska) celler vid ketonbehandling.

Så en viktig notering i en kort mening.

Caspase 3/7 activity increased upon treatment of the pancreatic cancer cells with ketone bodies in a dose-dependent manner.

Min tolkning: Aktiviteten av caspase 3/7 ökade dosberoende i cancerceller vid behandling med ketoner.

Caspaser är djupt inblandade i programmerad celldöd och slår på ett förberett sätt ut enskilda celler, såväl friska som cancerceller! Läs mer i Programmerad celldöd och cancer.

Treatment of Capan1 and S2-013 cells with ketone bodies resulted in a decrease in glucose uptake (Figure 2A,B) and release of lactate (Figure 2C,D) in a dose-dependent manner.

Min tolkning: Behandling av cancerceller med ketoner resulterade i dosberoende minskat glukosupptag och frisättning av mjölksyra.

Precis vad vi önskar, cancercellerna får inte den energi de behöver, de står under tryck, svälter!

Since glutamine also supports pancreatic cancer cell growth [7], we also evaluated the effect of ketone bodies on glutamine uptake. Our results indicate a reduced uptake of glutamine by Capan1 and S2-013 pancreatic cancer cells under treatment with ketone bodies (Figure 2E,F).

Min tolkning: Då (den glukogena aminosyran) glutamin understöder cancerceller utvärderade vi effekten av ketoner på glutaminupptaget. Vi noterade ett reducerat upptag av glutamin i cancercellprover vid ketonbehandling.

Även energitillskottet från glutamin reduceras vid ketonbehandling!

Furthermore we observed a reduction in intracellular ATP levels upon treatment with ketone bodies.

Min tolkning: Vi observerade en minskning i (cancer)cellernas interna ATP vid ketonbehandling.

Som väntat minskar cancercellernas ATP när man reducerar tillgången till glukos, oavsett om det kommer från blodsocker eller glutamin. Mitokondrierna är ju skadade och duger inget till.

Ketone bodies diminish the expression of glycolytic enzymes

Min tolkning: Ketoner minskar uttrycket av enzymer som är betydelsefulla för glukosomsättningen.

Av ”besparingsskäl” kan och bör vi inte producera sådant vi inte behöver. När vi har god tillgång på ketoner finns ingen anledning att fortsätta producera ämnen (glycolytic enzymes) som enbart glukosmetabolismen kräver.

We have demonstrated anticancerous and anticachectic properties of ketone bodies in cell culture conditions, as well as the effect of a ketogenic diet on tumor burden and cachexia in animal models. Furthermore, our studies establish a ketone body-induced metabolomics reprogramming as the mechanism of action of a ketogenic diet against cancer and cancer- induced cachexia.

Min tolkning: Vi har visat att ketoner motverkar cancer och kakexi i cellkulturer såväl som effekter av en ketogen kost på cancertumörer och kakexi i en djurmodell. Dessutom visar vår studie en metabol anpassning som riktas mot cancer och cancerberoende kakexi.

Studien innehåller mängder av data och för LCHF-intresserade enbart positiva slutsatser.


*) Aminosyror kan delas in som glukogena eller ketogena. De förra producerar glukos när de metaboliseras till energi, de senare bildar ketoner. Flertalet är rent glukogena (bland dem glutamin), fem är blandformer och endast två, leucin och lysin, är ketogena.

Apoptos är en avsiktlig och nödvändig förstörelse av kroppens celler och kallas programmerad celldöd. Den inleds redan tidigt i fosterlivet pågår ständigt hos alla människor och är en nödvändig förutsättning för ett långt och friskt liv.

  • Du har kanske sett bilder på mycket små foster där händer och fötter närmast ser ut som klubbor för att bara några veckor senare ha både fingrar och tår. Det som gör denna utveckling möjlig är apoptos som gradvis avlägsnar överflödiga vävnader som ligger mellan fingrar och tår.
  • Du har kanske hört talas om HbA1c, glykerat blodsocker, som felaktigt brukar kallas långtidsblodsocker. Det är en process där glukos i blodet klibbar fast vid proteiner i de röda blodkropparna. För att kompensera för detta och andra ”nötningsskador” elimineras blodkroppar genom apoptos och ersätts med nybildade. Vanligtvis anges blodkropparnas livslängd till ungefär 4 månader/120 dagar, men nyare data antyder att den kan vara så kort som 90 dagar och upp till över 140 dagar om blodsockerbelastningen är låg.

Apoptos kan starta av olika anledningar, t.ex. utveckling av vävnader (ex. fingrar och tår), skador i cellens DNA, skador från fria radikaler (ROS), glykeringar, virusinfektioner, brännskador och lite mer ospecifik 
stress”.

Mitokondrie

Celler innehåller hundratals eller fler mitokondrier som omvandlar ketoner, fettsyror och pyruvat till den energivaluta som kroppen använder, ATP (adenosintrifosfat). 

Mellan det yttre och inre membranet finns cytochrome c från elektrontransportkedjan som är den enskilt största producenten av ATP. När apoptosen går igång blir mitokondriens yttre membran poröst och släpper ut cytochrome c till cellvätskan, cytoplasman. I en serie händelser aktiveras diverse enzymer, de sista i kedjan är caspase 3 och caspase 7, som bryter ner cellen i sina beståndsdelar för återvinning. Märk att cytochrome c har dubbla roller, dels deltar den i mitokondriens energiproduktion och dels drar den igång apoptosen när den hamnar i cellvätskan.

Cancerceller är helt beroende av glukos för sin energiförsörjning, detta då deras mitokondrier är defekta. I en frisk cell kan en glukosmolekyl ge uppåt 38 ATP totalt varav 2 (netto) produceras i cellvätskan genom syreoberoende fermentering och resten i mitokondrien. I en cancercell fungerar inte mitokondrien, den har ”hängt sig”, reagerar inte på tilltal och kan därför inte dra igång den apoptos som skulle eliminera den gravt funktionsodugliga cancercellen.

I Socker, särskilt fruktos, gynnar cancer motiverade jag varför man bör motverka cancer genom att inte ge dem glukos samtidigt som man bör undvika att stimulera deras celldelning via fruktos.

Hur många vårdavdelningar serverar cancersjuka socker i kaffet, tårtor, kakor, bullar, juice, läskeblask och annat sockersötat?