Arkiv för februari, 2017

Vi kan alltid skaffa oss mer kunskap och närma oss sanningen men om vi mot förmodan skulle nå fram till sanningen skulle vi ändå inte veta att vi gjort det.

Källa: Xenofanes*

img_2163

Låt säga att vi hypotetiskt samlar alla tänkbara och otänkbara påståenden inom ett naturvetenskapligt område. Ingen skulle väl bli förvånad om några av dem med tiden visar sig vara falska.

  • Några sanningar är självklara, som att ”vatten är alltid vått”, åtminstone för de som aldrig träffat på is och snö.

Det finns diffusa och besvärliga områden där ”sanningen” är svårfångad. Som Xenofanes påpekar så kan vi då aldrig veta när vi funnit sanningen i vårt sökande. Det bästa vi kan göra är att eliminera falska påståenden och det utgör i praktiken nästan allt av ”alla tänkbara uttalanden”.

  • I sträng mening kan vi aldrig ”bevisa” att ett påstående är sant, däremot är det möjligt att falsifiera det, visa om det är osant. Om vi efter bästa förmåga eliminerar falska påståenden återstår de där sanningen möjligen kan finnas. Fortsätter vi systematiskt att angripa dessa kan vi gradvis eliminera det falska och avgränsa var sanningar finns även om vi inte vet dess exakta belägenhet.

Vi lever i det som optimister kallar ett informationssamhälle. Internet erbjuder närmast obegränsade möjligheter att sprida såväl kunskap, åsikter, hugskott, ironi, humor som avsiktlig desinformation. Har vi förmåga att skilja mellan vad som är i stort sett sant och det som är falskt?

Alldeles säkert inte om vi tänker på allt vi möter varje dag. Däremot kan vi med tiden lära oss skilja mellan källor som är hyfsat pålitliga och de som inte är det. Hur många väsentliga påståenden möter du som är uppenbart sanna i förhållande till de som är av tveksam natur (om än inte visat falska)?

  • Ett test: Välj media i tidningsställ eller på nätet och botanisera bland dess rubriker. Välj de som kittlar ditt intresse och se vad som döljer sig där bakom. Motsvarar de rubrikerna eller känner du dig lurad? Och då har du ännu inte kontrollerat om artikeln som sådan är korrekt.

Inom dagens nutritionsforskning är det populärt med epidemiologi** med enstaka kostenkäter, mängder av deltagare och som pågår under lång tid. Utgångsparametern, kostenkäten, är oftast synnerligen bristfällig då den sträcker sig över kort tid i förhållande till undersökningens varaktighet, man förutsätter att personen svarar sanningsenligt och fortsätter att äta på samma sätt i 1-10-30 år. Felmarginalen är redan där så stor att den inte kan kompenseras ens av oändligt noggranna mätningar i övrigt. Lite ironiskt kallas det SISU, Skit in, skit ut.

För att de ofta mycket små skillnaderna i utfall alls ska märkas redovisas de sällan i absoluta värden utan som relativa tal, grupper emellan. Det kan innebära att i en undersökning med 10000 deltagare under 20 år där en viss händelse i en grupp sker 5 gånger och i en annan 10 gånger då är den senare en fördubbling men i helheten som en pink i havet. Sant men förledande och ingen ärlig redovisning.

Sådana undersökningar kan ge anledning att formulera och testa hypoteser på ett vetenskapligt sätt genom att seriöst utmana dem för att se om de tål försök till falsifiering. De ”forskare” som gör dem är vanligen omotiverat stolta över sina resultat, journalister och halvbildade ser dem som väsentliga bidrag till ackumulerat vetande och lekmän i största allmänhet tror att de redovisar sanningar.


*) Xenofanes föddes i Kolofon omkring år 570 f.Kr. Det är svårt att med bestämdhet slå fast tidpunkten med noggrannhet eftersom mycket runt Xenofanes är höljt i dunkel. Man vet att han som ung flydde till Sicilien, där han livnärde sig själv genom att vid domstolen i Hiero (antik stad nära Syrakusa) recitera elegiska och jambiska verser som han skrivit för att kritisera teogonin (läran om gudarnas uppkomst) över Hesiodos och Homeros

**) Epidemiologi är läran om sjukdomsförlopps demografi. Bland annat studeras epidemier och andra sjukdomar som är tillräckligt vanliga för att det ska vara möjligt att få ett statistiskt underlag. Därför handlar epidemiologi inte bara om smittsamma sjukdomar, utan också om till exempel diabetes, hjärtsjukdomar och högt blodtryck. (Wikipedia) Ett avgörande bidrag lämnades av Bradford Hill när han satte upp ett antal kriterier.

Annonser

”Alla vet” att fett innehåller 9 och kolhydrater 4 kcal/gram. Men hur många vet vad det beror på? Båda består enbart av grundämnena kol (C), väte (H) och syre (O) men i olika proportioner och strukturell uppbyggnad.

Glukos

Kolhydrater, monosackarider, som har betydelse för oss ur energisynpunkt har summaformeln C6H12O6. De kan uppträda ensamt eller i  kombinationer som är väsentligt olika varandra. De tre grundläggande enkla sockerarterna glukos, fruktos och galaktos kan bilda så olika kombinationer som t.ex. cellulosa, fibrer och vanligt vitt socker.

Varje kryss och vinkeln representerar kolatomer även om de inte är utskrivna. Underlättar för de som förstår grundläggande ”kemiska”, strular till det för resten. En stor del av ett yrkes kompetens består i en terminologi som håller oinvigda på avstånd.

Hexansyra

De neutrala fetter, triglycerider, som vi både äter och kan lagra är långt mer varierande. De byggs av tre fettsyror, sinsemellan lika eller olika, bundna till en glycerolmolekyl, en slags bärare som håller samman och organiserar dem. Praktiskt taget all energi i en triglycerid finns att hämta från fettsyrorna, glycerolens bidrag är obetydligt och kompenseras mer än väl av att ny glycerol hela tiden måste nybildas när fettsyror ska återkombineras till triglycerider, något som sker flera gånger i en fettsyras ”liv”. För att göra en rättvisande jämförelse väljer jag en okomplicerad fettsyra med 6 kolatomer, den mättade hexansyran (hexan betyder 6). Dess summaformel är C6H12O2, märk likheten med monosackariden ovan!

Den övre av de båda framställningarna i bilden används gärna av kemister, de har kommit överens om att i varje ”vinkel” och änden av strecken finns en kolatom. Varje kolatom i vinklarna har sällskap av ett par väteatomer. Kolatomen i änden till vänster skiljer sig från de andra, den har tre väteatomer som sällskap. Den kallas metyländen och är en slags kemisk ”punkt”, ett avslut. Läser du om metylering i t.ex. DNA är det nästan samma sak, något som sätter in ett avslutande skiljetecken i den långa mening som kallas DNA.

Nu kan du ana vari skillnaden i energiinnehåll består, särskilt om du tänker på att all energimetabolism i slutändan bildar vatten (H2O) och koldioxid (CO2).

Att räkna mängder av ämnen i gram känns vardagligt och naturligt, men inte för kemister. Eftersom de ofta betraktar molekyler och deras inbördes reaktionen mycket närsynt väljer de ett helt annat mått, mol*. Avogadros tal** är en konstant som binder samman antalet atomer/molekyler av ett ämne med dess atom/molekylvikt.

Varje grundämne har en atomvikt som i huvudsak beror på atomkärnans massa, elektronernas bidrag är oftast försumbart. För kol använder vi talet 12, väte har 1 och syre 16. Då atomer i naturen visar små skillnader i sina atomkärnor så är dessa tal inte exakta utan varierar något men är alltid något större än de jag angett. (Irriterande fråga: Varför är de större?)

När vi adderar atomvikterna i en glukosmolekyl blir det (6×12 + 12×1 + 6×16) = 180. Nu är det så finurligt bestämt att 180 gram glukos innehåller 6,02 x 1023 ** molekyler och därför är 1 mol. Vid samma uträkning på hexansyra, den mättade fettsyra som har 6 kol, blir molvikten 116 gram.

I Review of Medical Physiology av William F. Ganong, 20de upplagan, finns ytterligare uppgifter vi behöver.

  • 1 mol hexansyra (116 gram) ger 44 mol ATP*
  • 1 mol glukos (180 gram) ger 38 mol ATP

100 gram glukos ger alltså ungefär 21,1 mol ATP medan samma massa av hexansyra presterar inte mindre än 37,9 mol ATP.

När vi utvinner energi ur glukos resp. hexansyra sker det genom lång rad reaktioner som resulterar i ATP, vatten och koldioxid. Både glukos och hexansyra har samma antal kol och väte men olika antal syre, glukosen har tre gånger så många. Det betyder att den redan är avsevärt mer oxiderad redan från start.

  • Som regel kan man betrakta andelen ”rena” kol-väte-bindningar som mått på det utvinningsbara energiinnehållet i en molekyl.
  • Alla fettsyror innehåller alltid exakt 2 syre, vilket innebär att energibidraget från en lång fettsyra är större än från en kortare.

Till detta kommer att enskilda glukosmolekyler aldrig kan uppträda koncentrerat i kroppen utan att skada oss. I hela blodmängden på 5-6 liter bör det inte varaktigt finnas nämnvärt mer än 5 gram glukos, 1 gram per liter = 1 promille. En fiktiv person på 70 kg skulle, givet att glukosen kan slås ut över hela kroppsmassan, kunna lagra 70 gram glukos.

Turligt nog är verkligheten annorlunda, glukos kombineras till långa grenade kedjor, glykogen, som lagras i muskler och levern, sammanlagt cirka 500 gram/2000 kcal. Koncentrationen kan ökas avsevärt utan att skada våra celler då det är ändarna på glykogenkedjorna som kan ställa till problem, och de är långt färre än antalet glukosmolekyler. Trots allt kräver detta glykogen en del vatten för att späda ut det till ofarliga koncentrationer. Ett komplett glykogenförråd väger då ungefär 2 kilo.


*) Mol är inte bundet till enbart atomer och molekyler utan kan användas för att räkna t.ex. antalet fotoner, ATP och annat som finns i oerhört stora antal.

**) Avogadros tal = 6,02 x 1023 = 602 000 000 000 000 000 000 000

***) ATP, adenosintrifosfat, är en grundläggande energibärare som produceras i cellernas mitokondrier ursprungligen från den mat vi äter eller återvinner från diverse lager i kroppen. ATP är en gemensam energivaluta som våra celler använder.

Alzheimers sjukdom är den vanligaste demenssjukdomen och drabbar över 44 miljoner människor världen över. I Sverige insjuknar cirka 15 000 personer i sjukdomen varje år. Forskare vid Lunds universitet har nu hittat en pusselbit i gåtan om Alzheimers sjukdom, ett sockernedbrytande enzym som man tidigare inte visste fanns i hjärnan.

Källa: Enzym i hjärnan ny pusselbit i Alzheimers sjukdom

I västerländsk miljö med ständig tillgång till mat och välfyllda butiker är det nästan självklart att kolhydratrika livsmedel dominerar. De är vanligen billiga att producera och har ofta lång hållbarhet, anledningar som tilltalar livsmedelshandeln. Att Livsmedelsverket dessutom rekommenderar att vi ska äta mer än halva energiinnehållet i form av kolhydrater bidrar naturligtvis.

Alla våra celler behöver energi och den övervägande massan har förmåga att använda minst två alternativ. Hjärnan är ett viktigt organ som skyddas av blod-hjärnbarriären mot ämnen som kan skada. De energibärare som skall kunna passera måste dels vara tämligen små och vattenlösliga för att följa blodet genom barriären.

Hjärnans energiförbrukning är närmast konstant över dygnet, dessutom oberoende om vi tänker djupa tanker eller spenderar tid på facebook. Där finns inga egentliga energiförråd av betydelse vilket innebär att allt måste tillföras kontinuerligt utifrån. Under evolutionens lopp har det aldrig funnits garantier för att man har ständig tillgång till mat, långa svältperioder har inte varit ovanliga och redan korta avbrott i energileveranserna till hjärnan skulle vara förödande, den behöver ständigt cirka 500 kcal/dygn.

Alla celler i kroppen behöver energi för att fungera och överleva och hjärnans celler använder till största del socker som energikälla. Därför är det otroligt viktigt att sockerupptaget till hjärnan, men även de komponenter som bryter ned sockret inuti cellerna, fungerar korrekt.

Lyckligtvis fungerar hjärnan på olika drivmedel varav det ena, ketoner, har 25% högre verkningsgrad än alternativet, glukos. Knappa 25% av den kräver dock glukos, mindre än 30 gram. ”All” vanlig nutritionslitteratur brukar beskriva att hjärnan alltid kräver glukos vilket är fel. Påståendet grundas sannolikt på att kostråd är så kolhydratrika att hjärnan fungerar som en ”glukossänka” för att motverka de skadliga effekterna av ett förhöjt blodsocker. Citatet ovan från artikeln har därför avsevärd förbättringspotential.

Studier har visat att patienter som lider av Alzheimers sjukdom har nedsatt förmåga att ta upp sockret till hjärncellerna vilket gör att de inte kan få den energi de behöver och dör. Det är när stora mängder av nervcellerna i hjärnan dör som symptomen av Alzheimers sjukdom uppkommer. Det kan handla om minnesförlust, minskad orienteringsförmåga och andra förändrade kognitiva förmågor.

Om studiens slutsats att glukosmetabolismen hos Alzheimerspatienter är nedsatt och leder till celldöd bör det vara logiskt att testa en ketogen kost för att åtminstone inleda behandlingen. En annan hjärnskada, epilepsi, kan framgångsrikt behandlas med strikt ketogen kost för att motverka och i vissa fall helt eliminera krampanfall.

Det största hindret för att testa en sådan behandling är antagligen att den inte är patenterbar eller ger nämnvärd akademisk prestige. De 44 miljoner redan drabbade hinner kanske inte uppleva fördelarna, men de kommer att följas av så många fler.


Tidigare på MatFrisk Ketondrift ger hjärnan en superboost!,  Ketoner mot hjärnskador

Läs mer: Sugar’s ‘tipping point’ link to Alzheimer’s disease revealed

Fullständiga mätningar av blodsockrets ursprung på människor görs aldrig, resonemangen baseras på hittills obestyrkta antaganden om samband mellan kostens bidrag och blodsockermätningar i kapillärblod (”stick i finger”). En viktig mätpunkt i detta sammanhang är portalvenen som leder blodet från glukosupptaget i tarmen och till levern. För att få användbara data måste man kunna mäta närmast kontinuerligt under många timmar vilket med dagens teknik förutsätter en inopererad sensor. Den studie som jag funnit är därför gjord på primater, babianer, som i detta sammanhang uppvisar stora likheter med människan. Från det sensorerna (det fanns fler) kom på plats till dess man gjorde första mätningen tog det 4 veckor! För en närmare beskrivning av alla de faktorer man måste hålla under kontroll samt hur försöket utfördes hänvisar jag till studien.

THE TYPICAL DIET IN THE US provides ∼50% of ingested calories as carbohydrate, 35% as fat, and 15% as protein. However, data from several studies have shown that a low­-carbohydrate diet containing 35–40% of calories as carbohydrate can have therapeutic effects in patients with type 2 diabetes by lowering plasma glucose, triglyceride, and very low­-density lipoprotein (VLDL) cholesterol, by increasing plasma high­-density lipoprotein (HDL) cholesterol concentrations, and by decreasing insulin requirements.

Min tolkning: En typisk kost i USA ger ungefär 50E% från kolhydrater, 35E% från fett och 15% från protein. Data från flera studier har emellertid visat att lågkolhydratkost (LC) med 35-40E% från kolhydrater har en fördelaktig effekt på personer med diabetes typ 2* genom att sänka blodsocker, triglycerider samt VLDL, öka HDL och minska insulinbehoven.

Källa: Metabolic response to high-carbohydrate and low-carbohydrate meals in a nonhuman primate model

Försöket är gjort på konstaterat friska babianer och återspeglar väl motsvarande system hos friska människor.

The metabolic response to a meal is carefully coordinated among several organ systems to prevent large excursions in plasma glucose concentration and to deliver ingested nutrients to appropriate tissues for storage or utilization.

Min tolkning: Kroppens reaktion på ett mål mat är noggrant koordinerat mellan flera organ för att undvika stora svängningar i blodsocker samt leverera dess näring till rätt vävnader för lagring eller användning.

Så långt lär ingen protestera, inte heller inför följande.

The normal regulation of postprandial plasma glucose involves an increase in insulin secretion from pancreatic β­-cells into the portal vein, insulin-­mediated suppression of endogenous (primarily hepatic) glucose production, and insulin­mediated stimulation of glucose uptake by peripheral tissues (primarily skeletal muscle). In fact, abnormalities in plasma glucose concentration after an oral glucose load is ingested are used as a clinical tool to diagnose impaired glucose tolerance and type 2 diabetes .

Min tolkning: Den normala regleringen av blodsockret som svar på ett mål mat innefattar insulinfrisättning till portalvenen med åtföljande hämning av egna glukosproduktionen (främst från levern) samt stimulering av muskler att ta upp blodsockret. Glukosbelastning är ett verktyg som utmanar denna mekanism när man diagnosticerar diabetes typ 2.

Det unika med denna studie är att man kontinuerligt följer blodflödet i portalvenen samt dess glukosinnehåll och redovisar det i förhållande till mer konventionella mått.

Efter 4 veckors anpassning till den utrustning babianerna bar in- och utvärtes samt tillvänjning av tekniker som närvarade mättes ett antal kroppsdata på var och en. Efter ytterligare ungefär 1 respektive 2 veckor fick de en LCHF– respektive HCLF-kost (lottad turordning). Notera att det som i denna studie kallas LCHF är tämligen liberal, ungefär 20E% kommer från kolhydrater och en avsevärd del av dem var ”snabba”, ingen av dem var ens i närheten av att kallas artegna.***

fig-1

  • Graferna kräver förklaringar. AUC (Area under curve) är ett vanligt mått på den sammanlagda effekten av en serie mätvärden över en tidsperiod.
  • Första kolumnen återspeglar blodsockret, de övriga insulinfrisättningen, resulterande C-peptid** och hastigheten i insulinfrisättningen (ISR)
  • Inom var och en av de åtta graferna avser de vänstra värdena de som fick HCLF och de högra LCHF. Strecken som binder samman mätvärdena parvis visar hur var och en individ reagerade.
  • De övre graferna visar mätvärdena ”ute i kroppen” (artery) och den nedre mätvärdena inne i portalvenen, de man annars aldrig mäter.

Ser du blodsockervärdena i portalvenen och i artärblod? Fundera några vändor över var man mäter och vad skillnaden beror på.

Fortsättning följer.


*) Diabetes typ 2 är en störning i kroppens förmåga att hantera monosackariden glukos. Detta kallas även sockersjuka, åldersdiabetes eller icke insulinberoende  diabetes

**) När signalhormonet insulin frisatts har det en kort ”livstid”, det absorberas av levern och de receptorer som det skall aktivera. C-peptid är en kort aminosyrakedja som avskiljs under framställningen och hamnar i blodet. Det blir kvar i cirkulationen betydligt längre och är ett slags ”kvitto” på mängden tillverkat insulin.

***) The LCHF meal was prepared by using butter, smooth peanut butter, honey crackers, whey protein, and dextrose. Glucose powder (9.4 g) was dissolved in heated water to form a syrup, and a [U­ 13C]glucose tracer (10% of total glucose) was added and dissolved in this syrup. This solution was mixed by using a magnetic stirring rod and sonicated to ensure homogeneity. Butter (17.5 g), crushed honey crackers (5 g), whey protein (8.1 g), and smooth peanut butter (22 g) were added to the syrup solution (17.5 g total carbohydrate), and the ingredients were mixed by using a spatula and refrigerated at 4°C until they were used for the study the following day.

Artegen mat är det de skulle ha ätit i frihet i sin naturliga miljö.

Ulcerös colit är en inflammatorisk sjukdom i tjocktarmen. Som namnet anger förorsakar den (blödande) sår som dels hindrar tjocktarmens funktion, dels ger blodförluster som kan vara mycket allvarliga. UC uppträder i skov med varierande frekvens och varaktighet och med rätt skötsel kan man leva med den under lång tid utan att den blir livshotande.

ulcero%cc%88s-colit

För egen del drabbades jag av ett enda skov våren 1970, hamnade på sjukhus nästan omgående. Gick ner i vikt till 49 kg och klarade inte ens att stå upp på en vanlig personvåg tillräckligt länge för att få en tillförlitlig avläsning. För att göra en lång historia kort opererades jag i november, hela colon togs bort och jag fick ”påse på magen”. Efter knappa två veckors konvalescens promenerade jag hem, 6 kilometer.

Få med UC upplever ett så dramatiskt förlopp, men livet under skoven är inget avundsvärt. Ständig oro för var toaletter finns är bara ett problem. Allt som kan underlätta är önskvärt och i den studie jag nu intresserar mig för finns hopp.

Most clinical studies analyzing the effects of butyrate on inflammatory status focused on UC patients. Hallert et al[1] instructed 22 patients with quiescent UC to add 60 g oat bran (corresponding to 20 g dietary fiber) to their daily diet. Four weeks of this treatment resulted in a significant increase of fecal butyrate concentration and in a significant improvement of abdominal symptoms.

Min tolkning: De flesta studier som analyserar effekten av butyrat (smörsyra) fokuserar på patienter med UC. 22 patienter med vilande UC uppmanades att dagligen äta äta 60 gram havreflingor (motsvarande 20 gram fibrer). Fyra veckor med denna behandling gav statistiskt säkerställda ökningar av butyratkoncentrationen och minskningar av magproblem.

För den som ännu inte läst de föregående inläggen: Tjocktarmens bakterieflora kan bearbeta fibrernas glukos och ur den bygga kortkedjiga mättade fettsyror, (SCFA) varav cirka 15% är just butyrat. En annan råvara för dessa bakterier är resistent stärkelse vilka dessutom har fördelen att inte irritera den angripna tarmen med överflödigt fiberinnehåll.

These and other intervention studies[62-64] suggested that the luminal administration of butyrate or stimulation of luminal butyrate production by the ingestion of dietary fiber results in an amelioration of the inflammation and symptoms in UC patients.

Min tolkning: Denna och andra studier [2-4] visar att tillförsel av butyrat eller stimulering av egen butyratproduktion kan dämpa inflammation och symtom hos personer med UC.

Så en komplicerad passage som, så vitt jag uppfattar den, antyder att den inflammatoriska processen påverkas av inverkan från transportproteinet GLUT1, en icke insulinberoende glukostransportör. Möjligen kan det tolkas som att inflammationen ökar då tarmväggen och/eller dess slemskikt tar energi från glukos snarare än den mättade fettsyran butyrat.

Numerous studies have reported that butyrate metabolism is impaired in intestinal inflamed mucosa of patients with IBD. Recent data show that butyrate deficiency results from the reduction of butyrate uptake by the inflamed mucosa through downregulation of MCT1. The concomitant induction of the glucose transporter GLUT1 suggests that inflammation could induce a metabolic switch from butyrate to glucose oxidation. Butyrate transport deficiency is expected to have clinical consequences. Particularly, the reduction of the intracellular availability of butyrate in colonocytes may decrease its protective effects toward cancer in IBD patients[5]

Här avstår jag från att skriva en tolkning.

Det går alldeles utmärkt att leva med ”påse på magen”, särskilt om alternativet är att ha magsmärtor, fundera över var närmaste toalett finns samt oro över tjocktarmscancer. Med nuvarande kunskaper skulle jag testa strikt LCHF i kombination med resistent stärkelse. Hade jag börjat i tid skulle kanske min UC aldrig ens debuterat.

Tidigare i ämnet: Nytta av korta fettsyror i tjocktarmen, del 1,   Korta fettsyror i tjocktarmen, del 2,  Upptag av korta fettsyror, del 3


[1] Hallert C, Björck I, Nyman M, Pousette A, Grännö C, Svensson H. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 2003; 9: 116-121 (Abstract)

[2] Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, Richter F, Dusel G, Kasper H. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103: 51-56

[3] Lührs H, Gerke T, Müller JG, Melcher R, Schauber J, Boxberge F, Scheppach W, Menzel T. Butyrate inhibits NF-kap- paB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 2002; 37: 458-466

[4] Vernia P, Marcheggiano A, Caprilli R, Frieri G, Corrao G, Valpiani D, Di Paolo MC, Paoluzi P, Torsoli A. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther 1995; 9: 309-313

[5] Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 2010; 16: 684-695

Potentially, SCFAs are absorbed by each intestinal segment, as demonstrated in animal models and human volunteers.

Min tolkning: SCFA (Kortkedjiga fettsyror) kan tas upp i varje del av tarmen, något som visats i djurmodeller och hos frivilliga försökspersoner

SCFA tas, till skillnad från de flesta andra näringsämnen, upp i både tunn- och tjocktarm. Provrörsstudier (in vitro) visat att koleratoxin som förorsakar akuta diarréer motverkas genom uppvätskning i kombination med resistent stärkelse*. Det senare är ett råmaterial som tjocktarmens bakterier använder för att producera små men betydelsefulla mängder av n-butyrat (smörsyra, SCFA).

Ett återkommande mantra som Livsmedelsverket upprepar gång på gång är ”Ät mindre salt!” De är naturligtvis inte ensamma om detta, men frågan är om deras uppmaningar är enbart till fördel.

  • Vi har många specialiserade öppningar i tarmväggarna för att kunna ta upp näringsämnen, en del arbetar passivt i den betydelsen att ämnen ”läcker” igenom från en högre till en lägre koncentration**. Andra ”lotsas” igenom tillsammans med ett annat ämne i en cotransporter. Dessa är transportproteiner (Ungefär rör genom cellväggar) där ett par olika ämnen/joner (laddade molekyler) samverkar för att ta sig igenom. Det ena följer sin koncentrationsgradient (från hög till en lägre koncentration) och det andra följer med ”på köpet”.

The colonocytes absorb butyrate and other SCFAs through different mechanisms of apical membrane SCFA uptake, including non-ionic diffusion, SCFA/HCO3 exchange, and active transport by SCFA transporters. The transport proteins involved are monocarboxylate transporter isoform 1 (MCT1), which is coupled to a transmembrane H+-gradient, and SLC5A8, which is Na+-coupled co-transporter.

Min tolkning: Butyrat och andra korta (mättade, märk väl!) fettsyror tas upp via diffusion, utbyte av SCFA och karbonat samt aktiva SCFA-transportörer … SLC5A8 som är en cotransportör med Na+.

Märk väl att Na+ är den ena jonen i natriumklorid, vanligt vitt salt!

Hur lite salt kan vi äta och fortfarande ta upp SCFA samt dra fördel av produktionen av korta fettsyror i tjocktarmen ur fibrer och resistent stärkelse?

Fortsättning följer.

Tidigare i ämnet: Nytta av korta fettsyror i tjocktarmen, del 1,   Korta fettsyror i tjocktarmen, del 2


*) Det kan alltså ligga något i den ordination min mor fick av en läkare på hembesök(?) när jag var liten i slutet av 40-talet, möjligen början av 50-talet. Hon skulle ge mig ett avkok av potatis. Ordinationen minns jag, också att den smakade rätt tråkigt. Om det verkade har jag glömt.

**) Koncentrationen kan syfta på såväl ämnenas koncentration som elektriska laddningspotentialer.

Autofagi är, som jag tolkar det, kroppens sophämtningssystem som jobbar med återvinning av aminosyror, förmodligen även mycket annat. Det krävs 2-3 hg av dessa aminosyror för att ersätta celler, enzymer och hormoner varje dygn och det går inte att äta sig till dessa mängder.

Källa: Artikel, Cancerfonden

Då alla celler, friska såväl som de med skadade mitokondrier (cancer), kräver aminosyror är det självklart att autofagin ”levererar” byggmateriel. På så sätt kan autofagin betraktas som skyldig till att hjälpa cancern. Dessutom bidrar den med den/de aminosyra som kan metaboliseras till dess energi.

Men, så vitt jag vet finns ingen process som aktivt ”stjäl” byggmaterial och energi från andra delar av kroppen, cancerceller får stå i kö som alla andra. Då de har enorma effektivitetsproblem i sin glukosanvändning kommer en ketogen kost att slå hårt mot dem och deras processer även om deras aminosyrametabolism kan hålla dem hjälpligt vid liv.

Via länken i artikeln diskuterar man pH i tumörer, men nämner inte att det är ”avfallet” från den usla glukosmetabolismen som ger denna effekt. Minns att det är mjölksyran som är biprodukten i den inledande anpassningen av glukos där pyruvat för en frisk mitokondries behov skapas. I cancerceller bildas mjölksyra i stora mängder, dels är blodflödet underdimensionerat i tumörer i förhållande till behovet och båda faktorerna gör att avfallshanteringen inte klarar sin uppgift, det blir ”surt” i tumören.

Så något om insulinets möjliga roll. Det finns långt fler insulinoberoende glukostransportörer (GLUT) i kroppen utöver de som styrs av insulin, GLUT4. Alla celler får därför ett grundbehov av glukos för sin överlevnad även om det för vissa celler inte täcker hela energibehovet. GLUT4 har en betydligt större transportkapacitet än de övriga, när den är aktiv är det som en lucka i botten av en vattentunna där de övriga är mer som olika stora hål i dess sidor. Typ.

Hur väl cancerceller är bestyckade med GLUT, särskilt 4-an vet jag inte, men med tanke på deras enormt stora glukosmetabolism är det troligt att mycket av den går via den insulinstyrda ”bottenluckan”. Också av det skälet är det logiskt att hålla insulinnivån låg genom uttalad LC, en ketogen kost! Att den dessutom inte bör innehålla mer än basbehovet av proteiner med en för människans behov väl anpassad aminosyraprofil säger sig självt då ungefär 4/5 av den energi som kommer av ett proteinöverskott kommer i form av glukos.

Vatten i glas

En uttalad form av ketogen metabolism sker vid några dagars vattenfasta då kroppen övergår till att utnyttja naturligt animaliskt fett från egna fettlager samt återvinner aminosyror från proteiner som har den aminosyraprofil vi människor behöver, de egna vävnaderna.

 

Så tänker jag, men det är ju bara en lekmans funderingar.