Inlägg märkta ‘fettsyror’

I tidigare inlägg har jag berättat rätt detaljerat om fettsyror ( #1: Fettsyror, en introduktion, #2: Raka och krökta fettsyror #3: Fettsyrors längd och omega-begreppet) och #4: Hur du bygger din egen fettväv

Logiskt sett borde detta varit inlägg #3,5 för att förklara hur fetter byggs upp av sina beståndsdelar och koppla samman dem till fetter i en ovanligt kort lektion.

 

  • Fetter är tre fettsyror sammanlänkade med en gemensam glycerolmolekyl (bilden till vänster) till en triglycerid, en fettmolekyl. Låt oss se hur det går till, processen kallas förestring.
  • OH-grupperna på höger sida definierar glycerolmolekylen som en alkohol  och ger den två förmågor, den kan lätt transporteras i vatten/blod och kan koppla till fettsyror eller andra molekyler, även de med OH-grupper.

 

  • När glycerolmolekyler och fettsyror blandas startar förestringen, de gulmarkerade OH-grupperna som är inringade möts och bildar en vattenmolekyl. Kvar blir en av syreatomerna som en länk.
  • R-et invid karboxyländen står för resten av fettsyran som kan vara i princip vilken som helst.

 

 

  • De gulmarkerade OH-grupperna i bilden ovan blir en fri vattenmolekyl.
  • Om bara en fettsyra är kopplad till glycerolmolekylen kallas det en monoglycerid, med två fettsyror en diglycerid och när alla tre platserna är fyllda följatligen en triglycerid, en fettmolekyl.
  • På korrekt ”kemiska” bör fett kallas triacylglycerol. (Tri– för tre, acyl– för att det är en fettsyra inblandad och glycerol bör vara uppenbart vid det här laget.)
  • När fettsyror länkas till glycerolet upphör de att vara sura och helheten är neutral.

I hittepå-fetter som margariner finner du mono- och diglycerider där de fungerar som emulgatorer och kan binda vatten till fetter. Det av dietister och andra konventionella kostrådgivare så förkättade smöret har en fetthalt om 80%, men utan konstlad hjälp skulle margariner vara 100% fett! Lösningen på detta dilemma är att tillsätta emulgatorer som tillåter att man kan blanda i avsevärda mängder vatten och på så sätt sänka fetthalten, men även råvarukostnaderna. Håll det i minnet ni som väljer lågfettprodukter, vatten är en minikostnadsråvara i detta sammanhang.

Minns också att mono– och diglycerider hydrolyseras till fettsyror i kroppen på samma sätt som fetter. Fettreducerade produkter med mono- och diglycerider har därför i praktiken ett högre fett(syra)innehåll än som står på deklarationen.

 

 

 

Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I första delen av serien visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära*, delen av molekylen medan karboxylgruppen är polär* och ”umgås” väl med vatten. Hos korta och medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

När fett nått förbi magsäcken/tolvfingertarmen är det emulgerat som ytterst små fettdroppar av gallan. Ungefär som diskmedel löser upp det feta i disken. När fettdropparna når tarmslemhinnan bearbetas de av lipaser, enzymer som delar upp fettmolekylen i beståndsdelar så att de kan passera in genom cellagret. Jag återkommer till det i ett senare inlägg.

  • De långa fettsyrorna återkombineras till fettmolekyler och packas i vattenlösliga transportfarkoster, kylomikroner, som går in i lymfsystemet. Då det inte finns någon ”motor” som driver på går det långsamt, men förr eller senare hamnar de i blodet för vidare befordran.
  • De korta och medellånga lotsas direkt till blodet och når snabbt olika slutförbrukare som t.ex. muskel– och leverceller. De är utmärkta som ”snabb energi” och lagras inte i fettväv.

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror

SCFA, Short Chain Fatty Acid, kortkedjiga fettsyror

Jag syftar på de med sammanlagt 2 till 5 kolatomer men indelningar som denna är inte självklara och olika åsikter finns. Effekten av den feta, hydrofoba* kolkedjan i förhållande till den hydrofila* karboxyländen avgör hur lätt den ”umgås” med vatten. Bland SCFA är det den hydrofila karboxyländen som med god marginal bestämmer.

  • Bakterier i tjocktarmen klarar att bryta ner fibrer och vissa andra andra kolhydrater som resistent stärkelse, RS. Ur dessa producerar de 4 korta mättade fettsyror, ättiksyra (2 kol, 60% av mängden), propansyra (3 kol, 25%), butansyra (smörsyra, 4 kol, 15%) samt en spårmängd av valeriansyra (5 kol). Dessa försörjer tarmen med energi, vilket förutsätter att fettsyrorna kan färdas i den vattenrika och därför polära* miljö som tarminnehållet utgör.

Om man äter/dricker SCFA utgör de en snabb energikälla om än inte helt oproblematisk. Ättiksyran, t.ex., måste spädas rejält för att bli drickbar och en varning är på plats då den fräter på tandemaljen. Skölj därför noga, men dröj med tandborstningen så du inte sliter på tandemaljen. Äppelcidervinäger är ett rimligt alternativ att prova för den nyfikne.

Som framgår av namnet är smör en källa (eng: butter) till butansyra. Här är risken för syraattacker på tänderna obefintlig då den sura änden av fettsyran är ”upphakad” av en glycerolmolekyl så länge det är ett fett.

MCFA, Medium Chain Fatty Acid, medellånga fettsyror

Detta är fettsyror med 6-10/12 kolatomer. Fortfarande dominerar karboxyländens förmåga att umgås med vatten, de passerar in genom tunntarmens epitel direkt till blodet och vidare till celler som har behov av dem. Kokosolja är ett utmärkt exempel.

Övriga fettsyror

Allt eftersom den ”feta” delen av fettsyran (metyländen + kolkedjan) börjar dominera försvinner möjligheten att på egen hand följa blodet och en långsammare omväg tar över logistiken. Repetera gärna början av inlägget om du inte minns varför.

Omega-begreppet

Metyländen betraktas av kemister som slutet av en fettsyra och kallas därför omegaänden. (Omega är den sista bokstaven i det grekiska alfabetet). I nutritionssammanhang har den en avgörande betydelse och vissa fettsyror beskrivs och får sina namn med utgångspunkt från omega-änden.

Lägg märke till minustecknet mellan omega och 3, 6 eller andra siffror som kan finnas! Det är inte ett bindestreck utan anger att man räknar bakåt i kolkedjan, med utgångspunkt från kolet i metyländen. Ibland skriver man n-3 eller ω-3

Omega-3, n-3, ω-3

De har sin första dubbelbindning mellan kolatom 3 och 4, räknat från metylgruppen, det finns vanligen fler med två enkelbindningar emellan. Ju fler dubbelbindningar desto mer kröker sig fettsyran mot en spiralform om den är riktigt lång. Då omega-3-fettsyrors krökningar börjar tidigt i kedjan finns det, för en given kolkedjelängd, plats för flera vilket ger fettsyran en spiralform och väldigt rinniga oljor med låg smälttemperatur. Växelvarma djur i mycket kall miljö, t.ex. fiskar i Norra Ishavet, har särskilt mycket omega-3-fettsyror för att alls kunna röra sig i det kalla vattnet vid temperaturer vid och under noll.

Omega-6, n-6, ω-6

Dessa har sin första dubbelbindning mellan kolatom 6 och 7, fler finns vanligen med två enkelbindningar emellan. Vid lika antal kol har omega-6-fettsyror en större andel rak kolkedja än omega-3 vilket gör dem något mindre rinniga. Vegetabiliska oljor från varma miljöer har en större andel omega-6 då de växter de kommer från annars skulle sloka svårt i värmen.

Essentiella fettsyror

Vi kan själva tillverka mättade fettsyror upp till 16-18 kol (uppgifterna varierar mellan olika källor) och ur dessa även enkelomättade med hjälp av enzymer som heter desaturaser**. Vi har däremot inte desaturaser som kan skapa dubbelbindningar så nära metyländen som vid kol 6 eller tidigare. Dessa måste vi därför få från det vi äter och kallas därför essentiella, livsnödvändiga. Det är omega-3-fettsyran alfa-linolensyra och omega-6-fettsyran linolsyra, råmaterial som kroppen bygger vidare på.


*) Hydro– syftar på vatten, –fil och –fob har betydelser som sannolikt alla förstår. Hydrofil innebär ungefär ”vattenälskande” och hydrofob ”vattenskyende”. Med korrekt terminologi: hydrofila ämnen löser sig i polära och hydrofoba i opolära lösningsmedel. Vatten och därmed blod är polära lösningsmedel.

**) Desaturaser plockar bort två väteatomer, en från vardera näraliggande kol i kedjan. De är specialiserade och kan till exempel räkna. Mer om detta i ett senare inlägg.

Oavsett om du är positivt eller negativt inställd till fett som del i mat eller kropp så är det en fördel att känna till den kemiska bakgrunden.

Jag hatar kemi, värsta ämnet i skolan!

Helt säkert är det onödigt många som tycker så eller åtminstone något liknande. Då är det definitivt dags att tänka om, särskilt om du vill göra något åt en övervikt. Kroppen ”vet” definitivt allt om sin fettkemi, den tillverkar och lagrar ur det du äter. Kan du tillåta att kroppen är så överlägsen din hjärna?

Om du tar till dig eller själv använder påståenden som ”undvik mättade fetter, de är farliga” och ”ät mer fleromättade fetter, de är jättenyttiga” så är jag övertygad om att du kan vidga dina perspektiv avsevärt. Det sker inte i en handvändning, därför blir det flera inlägg.

Grundläggande kemi om vårt garanterat största energilager

Endast tre grundämnen bygger samtliga fettsyror, nämligen väte, syre och kol. De kan binda till många andra ämnen, men i detta sammanhang fokuserar jag enbart på deras inbördes umgänge.

Kemister talar om bindningar mellan atomer, de kan ha flera betydelser som jag inte går närmare in på. Betrakta dem för enkelhets skull som utsträckta händer, beredda att ta andra i hand. Snart nog slutar jag att referera till ”händer” och ”greppa” och övergår till det mer traditionell ”binda” och ”bindningar”.

  • Väteatomen (H) kan ”hålla sin enda hand” med andra väteatomer (blir vätgas, H2) men även med kol och syre (t.ex. en syre + två väte, H2O = vatten).
  • Syreatomen (O) har två ”händer”. När syre ”håller varandra med båda händer” bildas syrgas (molekylen O2).  När syre reagerar med kol i metabolismen (ämnesomsättningen) ger det koldioxid (CO2). Det krävs två syreatomer med vardera två ”händer” för att ”greppa” de fyra som en ensam kolatom har.
  • Kolatomer (C) är unika då de kan bilda kedjor. En kolatom är ”fyrhänt” och kan ”hålla hand” med upp till 4 atomer samtidigt. Inte så sällan greppar två kolatomer varandra med dubbelfattning, en dubbelbindning. Självklart blir det då färre händer/bindningar över till annat. En dubbelbindning är dessutom ”stelare” än en enkel bindning, testa gärna skillnaden genom att hålla en annan person med två händer istället för en.
Kolkedjan

Den enklaste varianten är en rad kolatomer med enkelbindningar emellan och varje kol dessutom binder till två väteatomer. Här är alla atomer angivna med bokstäver och de linjer som slutar i tomma intet antyder att kedjan ansluter till något annat.

 

Det finns andra sätt att illustrera kolkedjor, till vänster finns kolen där linjerna korsar varandra och där linjerna slutar finns alltid en väteatom. Denna är C3H8, propangas.

 

Ytterligare ett sätt med annorlunda regler. Här finns det en kolatom vid varje ände av strecken, dessutom en i varje knick, sammanlagt 6 st. En tilläggsregel är att kolatomerna binder till 4 andra atomer om inget annat anges. Kolen i de 4 knickarna har underförstått 2 väteatomer vardera och i ändarna finns det 3 väte, alltså  C6H14, hexan, en komponent i bensin.

Metyländen

En kolatom har 4 möjliga ”händer” och om vardera greppar var sin väte bildas gasen metan (CH4).

 

 

När en kolatom binder tre väte kallas det en metylgrupp (CH3) Minustecknet betyder att gruppen som helhet har ett elektronöverskott, men kan även betraktas som att den har ”en hand över” som kan binda till något annat. Den finns inte som en fristående molekyl utan alltid som en del i ett annat ämne. En metylgrupp kan kemiskt betraktas som ett ordnat avslut på en kolkedja. Metyländen avslutar den feta delen av en fettsyra och kallas även omega-änden, mer om detta senare.

Karboxyländen

Detta är den andra änden av en fettsyra, det flertalet kemister betraktar som början, alfaänden. Alfa är den första bokstaven i det grekiska alfabetet, de följande kolatomerna kan numreras men vid namngivning används gärna det grekiska alfabetet. Skrivet på ett mycket kompakt men oöverskådligt sätt: COOH– Det är heller inte en fullständig molekyl, den har ett elektronöverskott och därmed en ”ledig hand” där den binder till resten av kolkedjan i en fettsyra. Mycket generellt kan det skrivas R-COOH där R** kan tolkas som ”Resten av molekylen”

Karboxyländen kan koppla vidare till andra molekyler, dess OH-grupp (hydroxylgrupp) har den förmågan.

  • OH-grupper i molekyler ”umgås” gärna  med vatten och är de tillräckligt många i förhållande till molekylen i övrigt så kan molekylen som helhet transporteras i blodet utan hjälp.
  • Finns rätt enzymer tillgängliga när två lämpliga molekyler med OH-grupper på rätt ställen träffs så drar enzymet de två molekylerna intill varandra, i skarven plockar det bort två väte och ett syre (som bildar vatten), kvar återstår en syreatom som fungerar som ”koppel”. Processen kallas förestring.
  • Om det går åt andra hållet, ett annat enzym försedd med en vattenmolekyl kommer till samma bindning så kan den ”peta in” den i bindningen så den faller isär, hydrolyseras***

Fettsyra

När man kopplar samman en metylände med en kolkedja och en karboxylände blir slutresultatet en fettsyra som får sitt grundläggande namn av antal kol i hela molekylen. Den till vänster heter butansyra, även känd som smörsyra. Väteatomen, H i karboxylgruppens OH sitter lite ”halvlöst” och under vissa omständigheter lossnar den och bildar en H+-jon (egentligen en hydroniumjon, H3O+), just det som kännetecknar en syra, se där skälet till att det heter fettsyra. Alla organiska syror räknas som svaga även om det finns några med få kolatomer som överraskar.

Grattis, redan nu vet du långt mer om fettsyror än de flesta, men vi stannar inte där, fortsättning följer.


*) Du kanske har hört talas om metylering, ” kemiska” för att ”sätta punkt” i t.ex. en kolkedja eller DNA.

**) En del molekylgrupper kan koppla upp sig åt mer än ett håll och därför ser man förutom R även R’

***) Hydrolysera: Hydro står för vatten och lysera för att upplösa, sära på.