Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I första delen av serien visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära*, delen av molekylen medan karboxylgruppen är polär* och ”umgås” väl med vatten. Hos korta och medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

När fett nått förbi magsäcken/tolvfingertarmen är det emulgerat som ytterst små fettdroppar av gallan. Ungefär som diskmedel löser upp det feta i disken. När fettdropparna når tarmslemhinnan bearbetas de av lipaser, enzymer som delar upp fettmolekylen i beståndsdelar så att de kan passera in genom cellagret. Jag återkommer till det i ett senare inlägg.

  • De långa fettsyrorna återkombineras till fettmolekyler och packas i vattenlösliga transportfarkoster, kylomikroner, som går in i lymfsystemet. Då det inte finns någon ”motor” som driver på går det långsamt, men förr eller senare hamnar de i blodet för vidare befordran.
  • De korta och medellånga lotsas direkt till blodet och når snabbt olika slutförbrukare som t.ex. muskel– och leverceller. De är utmärkta som ”snabb energi” och lagras inte i fettväv.

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror

SCFA, Short Chain Fatty Acid, kortkedjiga fettsyror

Jag syftar på de med sammanlagt 2 till 5 kolatomer men indelningar som denna är inte självklara och olika åsikter finns. Effekten av den feta, hydrofoba* kolkedjan i förhållande till den hydrofila* karboxyländen avgör hur lätt den ”umgås” med vatten. Bland SCFA är det den hydrofila karboxyländen som med god marginal bestämmer.

  • Bakterier i tjocktarmen klarar att bryta ner fibrer och vissa andra andra kolhydrater som resistent stärkelse, RS. Ur dessa producerar de 4 korta mättade fettsyror, ättiksyra (2 kol, 60% av mängden), propansyra (3 kol, 25%), butansyra (smörsyra, 4 kol, 15%) samt en spårmängd av valeriansyra (5 kol). Dessa försörjer tarmen med energi, vilket förutsätter att fettsyrorna kan färdas i den vattenrika och därför polära* miljö som tarminnehållet utgör.

Om man äter/dricker SCFA utgör de en snabb energikälla om än inte helt oproblematisk. Ättiksyran, t.ex., måste spädas rejält för att bli drickbar och en varning är på plats då den fräter på tandemaljen. Skölj därför noga, men dröj med tandborstningen så du inte sliter på tandemaljen. Äppelcidervinäger är ett rimligt alternativ att prova för den nyfikne.

Som framgår av namnet är smör en källa (eng: butter) till butansyra. Här är risken för syraattacker på tänderna obefintlig då den sura änden av fettsyran är ”upphakad” av en glycerolmolekyl så länge det är ett fett.

MCFA, Medium Chain Fatty Acid, medellånga fettsyror

Detta är fettsyror med 6-10/12 kolatomer. Fortfarande dominerar karboxyländens förmåga att umgås med vatten, de passerar in genom tunntarmens epitel direkt till blodet och vidare till celler som har behov av dem. Kokosolja är ett utmärkt exempel.

Övriga fettsyror

Allt eftersom den ”feta” delen av fettsyran (metyländen + kolkedjan) börjar dominera försvinner möjligheten att på egen hand följa blodet och en långsammare omväg tar över logistiken. Repetera gärna början av inlägget om du inte minns varför.

Omega-begreppet

Metyländen betraktas av kemister som slutet av en fettsyra och kallas därför omegaänden. (Omega är den sista bokstaven i det grekiska alfabetet). I nutritionssammanhang har den en avgörande betydelse och vissa fettsyror beskrivs och får sina namn med utgångspunkt från omega-änden.

Lägg märke till minustecknet mellan omega och 3, 6 eller andra siffror som kan finnas! Det är inte ett bindestreck utan anger att man räknar bakåt i kolkedjan, med utgångspunkt från kolet i metyländen. Ibland skriver man n-3 eller ω-3

Omega-3, n-3, ω-3

De har sin första dubbelbindning mellan kolatom 3 och 4, räknat från metylgruppen, det finns vanligen fler med två enkelbindningar emellan. Ju fler dubbelbindningar desto mer kröker sig fettsyran mot en spiralform om den är riktigt lång. Då omega-3-fettsyrors krökningar börjar tidigt i kedjan finns det, för en given kolkedjelängd, plats för flera vilket ger fettsyran en spiralform och väldigt rinniga oljor med låg smälttemperatur. Växelvarma djur i mycket kall miljö, t.ex. fiskar i Norra Ishavet, har särskilt mycket omega-3-fettsyror för att alls kunna röra sig i det kalla vattnet vid temperaturer vid och under noll.

Omega-6, n-6, ω-6

Dessa har sin första dubbelbindning mellan kolatom 6 och 7, fler finns vanligen med två enkelbindningar emellan. Vid lika antal kol har omega-6-fettsyror en större andel rak kolkedja än omega-3 vilket gör dem något mindre rinniga. Vegetabiliska oljor från varma miljöer har en större andel omega-6 då de växter de kommer från annars skulle sloka svårt i värmen.

Essentiella fettsyror

Vi kan själva tillverka mättade fettsyror upp till 16-18 kol (uppgifterna varierar mellan olika källor) och ur dessa även enkelomättade med hjälp av enzymer som heter desaturaser**. Vi har däremot inte desaturaser som kan skapa dubbelbindningar så nära metyländen som vid kol 6 eller tidigare. Dessa måste vi därför få från det vi äter och kallas därför essentiella, livsnödvändiga. Det är omega-3-fettsyran alfa-linolensyra och omega-6-fettsyran linolsyra, råmaterial som kroppen bygger vidare på.


*) Hydro– syftar på vatten, –fil och –fob har betydelser som sannolikt alla förstår. Hydrofil innebär ungefär ”vattenälskande” och hydrofob ”vattenskyende”. Med korrekt terminologi: hydrofila ämnen löser sig i polära och hydrofoba i opolära lösningsmedel. Vatten och därmed blod är polära lösningsmedel.

**) Desaturaser plockar bort två väteatomer, en från vardera näraliggande kol i kedjan. De är specialiserade och kan till exempel räkna. Mer om detta i ett senare inlägg.

Advertisements

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s