Arkiv för kategori ‘Kolhydrater’

HbA1c är ett labbvärde som visar hur mycket proteinet A1c i blodet blivit glykerat, ”nedkletat” med en monosackarid*. Ungefär som när man blir klistrig om fingrarna av att doppa dem i en sockerlösning eller äter ett Wienerbröd.

  • I kemins underbara värld finns flera sätt för atomer och molekyler att ”umgås” på. Ett av de allra vanligaste i vår metabolism finns i R-OH-grupper. Låter lite knepigt men är ganska lätt att förstå med lite hjälp.
  • R i dessa sammanhang kan tolkas som ”Resten av molekylen”, bindestrecket symboliserar en bindning medan O och H har sin vanliga betydelse, en syre– och en vätemolekyl.
  • En helt vanlig vattenmolekyl är exempel på detta, H-OH eller H2O som vi vanligen skriver. OH-grupper i molekyler gör att de gärna ”umgås” med vatten och ju fler de är desto lättare. Det låter ju smidigt, men har en avsevärd nackdel när man ser närsynt på det.
  • En molekyl som helhet är elektriskt neutral, men inte dess beståndsdelar. Slutresultatet blir att den osymmetriska laddningsfördelningen i en OH-grupp attraheras till motsatta osymmetrier i andra molekyler. Ju fler OH-grupper ett ämne har desto större chans  att de hakar fast vid proteiner som är mycket välförsedda med lokala osymmetrier i laddningarna.
  • Exempel på vanliga ämnen i blodet som har en osedvanligt stor andel OH-grupper är monosackariderna glukos, fruktos och galaktos. I dessa molekyler med 6 kol finns hela 5 OH-grupper, hela tiden kapabla att haka fast vid proteiner.
  • Av någon anledning jag inte känner är fruktos flera gånger mer benägen att glykera blodproteinet A1c än glukos.

Följden blir att proteiner med dessa påhäng inte fungerar som de ska och i sin tur kan fastna vid andra. Indirekt kan HbA1c uppfattas som ett väldigt ungefärligt mått på medelblodsockret under några veckor, men det säger inte hur svajigt det varit. Om blodsockret varit en blandning mellan många riktigt låga och några få höga så kan HbA1c vara ”falskt bra” trots att ytterligheterna skapat problem.

  • Glykering, oavsiktlig och slumpmässig försockring, drabbar i princip alla vävnader i kroppen, inte bara blodet.
  • Glykosylering är en noga reglerad process där enzymer gör jobbet och sätter monosackariden där den hör hemma.

Det finns några strategier att förbättra HbA1c, via motion/kostbehandling och insulindosering.

    1. Större insulindoser ger lägre blodsocker och HbA1c men hämmar även kroppens normala mekanismer att förse blodet med energibärare som fettsyror/ketoner samt glukos från egna lager som fettväv och leverglykogen. Märk väl att fettsyror, hur långa de än är, bara har en OH-grupp. Två av ketonerna, acetoacetat och beta-hydroxybutyrat, har en vardera medan aceton har ingen.
    2. Fysisk aktivitet sänker på sikt mängden cirkulerande blodsocker och tär även på befintligt muskel- och leverglykogen så där finns plats att ta upp glukos även efter att den fysiska aktiviteten (arbete/motion) upphör. Detta resulterar i lägre HbA1c. Något många förvånas över, även bland diabetesvårdens personal, är att fysisk aktivitet momentant ökar blodsockernivån.
    3. Kostbehandling med reducerad mängd kolhydrater som vid LCHF, gärna kombinerat med fasta, minskar mängden tillfört och därmed även cirkulerande blodsocker och ger lägre HbA1c.

Under senare tid har Diabetisk Ketoacidos, DKA, hamnat i fokus. Det är en följd av insulinbrist hos diabetiker typ 1** och yttrar sig i att blodets pH-buffrande förmåga uttöms och dess pH sjunker under den normala nivån. Om detta inte behandlas kan tillståndet snabbt bli allvarligt, till och med dödligt.

De som kritiserar användning av LCHF för insulinbehandlade diabetiker, främst då typ 1, menar att den låga mängden kolhydrater i kosten kräver så små mängder insulin att det kan leda till insulinbrist och DKA. Insulinets akut viktigaste uppgift är att styra sin ”hormonella motsats”, glukagon. När man äter kolhydrater förbrukas en motsvarande mängd insulin och ”nettomängden” som blir kvar för att styra glukagonet blir långt mindre än doseringen antyder. Å andra sidan, äter man lågkolhydratkost kommer en större andel av insulinet att användas för regleringen av glukagonet.

Även protein kräver insulin och den som till äventyrs är rädd för att insulinmängden blir alltförför låg kan lägga till extra protein. De kan på sätt och vis liknas vid ”långsamma kolhydrater” då det tar rejält med tid från passagen in via munnen till dess de spjälkats färdigt. De aminosyror, proteiners byggstenar, som blir energi strippas på sitt kvävehaltiga innehåll och ger till mer än 3/4 glukos.

Lägg märke till den gråa ytan som omger medelvärdet. Runt 4.5 % finns en rejäl riskminskning, så stor att den sjunker under det grafen kan visa. Samtidigt finns de vars risk är nästan fördubblad vid samma HbA1c.

Min hypotes är att de som når ”bra” HbA1c med intensiv medicinbehandling och åtföljande blodsockersvängningar löper större risker än de med en ”mjuk blodsockerkontroll” med LCHF.

Om du finner felaktigheter eller oklarheter i det jag skriver så är jag tacksam om du meddelar mig i kommentar eller via mail till erik.matfrisk (at) gmail (dot) com


Fördjupad läsning för den vetgirige: Högt blodsocker skadar proteiner Lägg särskilt märke till att glykering drabbar mycket långsamomsatt kollagen, en viktig komponent i stödjevävnad som ben, hud, senor och blodkärlsväggar.

Metabol flexibilitet  Hur kroppen utnyttjar mer energi än blodsocker, t.ex. det fett du gärna vill bli kvitt.

*) Den monosackarid man mäter i blodet är glukos, men den överlägset mest glykeringsbenägna är fruktos, ena halvan av vanligt vitt socker samt den som ger frukter deras sötma.

**) Liknande situationer kan uppkomma vid allvarlig alkoholförgiftning, ketoacidos, och vid allvarlig störning i njurfunktionen, laktacidos. Den senare kan uppkomma i samband med behandling av diabetes typ 2 med Metformin. Se 4 fallrapporter i Läkartidningen.

Polariserade påståenden som ”allt handlar om kalorier” och ”kalorier har ingen betydelse” är fel men på olika sätt, lite som att bomma tavlan på var sida. Den verklighet vi lever i är mer komplex än så men fullt förståelig om man bara tar sig tid att fundera.

Vi har en hormonproducent, betaceller, som läser en aspekt av blodets blodets innehåll, blodsockernivån, och sänder ut insulin om det behövs. Insulin fungerar som en trafikpolis och dirigerar bland annat blodsockret dit det för ögonblicket passar in. Samtidigt hejdas flödet av energi från andra (lokala = redan lagrad fettväv) källor. Dit hör fett, fettsyror och i förekommande fall även ketoner. 

  • Då mängden kolhydrater från en måltid överstiger det som kan förbrukas tämligen omgående kommer överflödet till en del att lagras som muskel– och leverglykogen. Det är en kompakt form av glukoslagring men totalt ändå inte mer energi än vi förbrukar under cirka ett dygn. Leverglykogenet är värdefullare i den bemärkelsen att det kan exporteras i blodet till vilka vävnader som helst. Merparten, 400 av 500 gram, finns i muskelceller där det bara kan användas av exakt den cell där det lagrats.
  • När glykogenlagren börjar nå sitt maximum ökar leverns fettsyrasyntes och fettproduktion (lipogenes). Detta kan exporteras i lipoproteinet VLDL vars innehåll brukar redovisas i labbrapporter som TG, triglycerider. Hos blandkostare är detta värde av naturliga skäl generellt högre än hos fokuserade LCHF-are.
  • Då celler längs blodbanan är välfyllda med glukos och glykogen till följd av högt blodsocker och aktivt insulin minskar deras ”intresse” för VLDL/TG. En konsekvens är att fett som levern fortsatt producerar ”slarvlagras” i levern.
  • Om man äter måttlig mängd mat och låter det gå tillräckligt länge mellan måltiderna så kommer det mellanlagrade fettet i levern med tiden att paketeras i VLDL för vidare befordran. Detta har rimligen varit norm snarare än undantag under människans evolution där vare sig kylar, Seven Eleven eller Donken fanns tillgängligt.
  • Med för mycket mat och tätt mellan måltiderna (till exempel det som kallas mellanmål) hinner inte leverns fettlager tömmas helt och nästa gång vi äter är risken stor att stegvis öka förrådet. Sker det regelbundet riskerar vi NAFLD (Non Alcoholic Fatty Liver Disease), icke alkoholberoende fettlever. Om och när fettmängden ökar kommer leverns egentliga arbetsuppgifter att hamna i skymundan. Här kan ätmönster* som 5:2 och 16:8 göra avsevärd nytta.
  • Observera att de som följer det jag kallar ”konventionella kostråd” kommer att äta 50E% eller mer från kolhydrater**.

Vi kan definiera mättnad på olika vis, t.ex. när maten står upp i halsen. Min favorit är annorlunda, jag värderar långt mer att tiden efter en måltid till dess jag spontant börjar fundera på mat igen blir så lång som möjligt, att intervallet med nöjdhet är stort.

  • Vid en kolhydratrik måltid kommer en del av energin att mellanlagras som glykogen, i levern som fett samt i ordinarie fettväv. Inga av dessa ger särskilt stora mättnadskänslor (jo, de finns men är inte i proportion till hur mycket energi de tillför). Dietister och andra med konventionella kunskaper brukar framhålla att man ska äta ”långsamma kolhydrater” för att slippa snabba blodsockerhöjningar och efterföljande dippar vilka leder till hungersug som inte står i proportion till behovet.
  • En LCHF-are som vant sig vid livsstilen kommer att uppleva en långvarig nöjdhet. Gradvis lär man sig att tallriken inte behöver fyllas lika mycket som förr, man äter spontant mindre än tidigare.

Det är skillnad på att ”äta hur mycket som helst” och ”äta så mycket jag vill”. Som blandkostare kan skillnaden vara rätt liten, men för en tillvand LCHF-are är den avsevärd.

En stor fördel med fett i maten är, förutom att det inte triggar insulin, till en del är en förhållandevis ”långsam” energikälla. De längre fettsyrorna med 14 kol eller fler måste ovillkorligen ta en långsam omväg. När de passerar in i blodet packas de i en ”transportfarkost”, lipoproteinet kylomikroner, som sedan i långsam takt transporteras via lymfsystemet fram till blodomloppet. Lymfsystemet har inget egentligt drivsystem liknande hjärtat i blodomloppet, det är muskelrörelser som ”klämmer fram det” med hjälp av ett antal backventiler. Resultatet blir att mättnadseffekten blir utdragen och bidrar till långtidsnöjdheten.

En påtaglig skillnad mellan att gå ner i vikt med LCHF gentemot svältbantning med blandkost beror på kroppens förmåga att skilja mellan tillräckligt mycket näring vid LCHF och ett kalori- och näringsunderskott vid kaloribaserad bantning. En tillvand LCHF-are kan slösa bort en begränsad mängd överskottsenergi medan den som svältbantar kan leva med ett påtagligt kaloriunderskott utan att gå ner nämnvärt i vikt. Skillnaden mellan dessa två lägen kan vara avsevärd och upplevas paradoxal men är helt logisk.

En stor del av energin i den mat vi äter ger avsevärda omvandlingsförluster innan det blir byggnadsmaterial och ATP (kroppens energivaluta), något vi upplever som värme. Om du svältbantar när omgivningstemperaturen är hyfsat låg kommer du att känna dig ständigt frusen, kroppen känner av energiunderskottet och minskar blodflödet till huden hellre än att drabba något viktigare.

  • LCHF-are äter spontant mindre måltider och med större intervall utan att känna sig påtagligt hungriga.
  • Svältbantande kaloriräknare på blandkost upplever oftare hunger och andra obehag som gör det svårt att hålla sig till bantningskosten. Dessutom hamnar man lätt i ett deprimerande ”sparaläge” och förbrukar bara begränsad mängd energi ur egna fettlager om inte man äter rejält lite.

*) Till skillnad från LCHF och andra kostmodeller som anger sammansättningen av det man äter är 5:2 och 16:8 exempel på ätmönster, hur man äter.

  • 5:2 innebär att under en vecka äter man ”som vanligt” under 5 dagar och rejält mindre under 2 dagar men inte i följd, 500 kcal för kvinnor och 600 kcal för män.
  • 16:8 innebär att under 16 timmar av ett dygn äter man inte, ”korttidsfastar” från tidig kväll till nästa förmiddag, med ett ”ätfönster” om 8 timmar.

Båda dessa ätmönster, var för sig eller i kombination, kan användas med vilken kostmodell som helst.

**) Med kolhydrater syftar jag här på deras energigivande innehåll av monosackariderna glukos, fruktos och galaktos eller molekyler som de byggs av. De tillför inget väsentligt och unikt utöver energi och kan med rätta kallas ”tomma kalorier”. Kostmodeller som t.ex. Livsmedelsverket rekommenderar (för friska) är därmed till minst hälften synnerligen ensidiga och ”tomma kalorier”.

”Alla vet” att fett innehåller 9 och kolhydrater 4 kcal/gram. Men hur många vet vad det beror på? Båda består enbart av grundämnena kol (C), väte (H) och syre (O) men i olika proportioner och strukturell uppbyggnad.

Glukos

Kolhydrater, monosackarider, som har betydelse för oss ur energisynpunkt har summaformeln C6H12O6. De kan uppträda ensamt eller i  kombinationer som är väsentligt olika varandra. De tre grundläggande enkla sockerarterna glukos, fruktos och galaktos kan bilda så olika kombinationer som t.ex. cellulosa, fibrer och vanligt vitt socker.

Varje kryss och vinkeln representerar kolatomer även om de inte är utskrivna. Underlättar för de som förstår grundläggande ”kemiska”, strular till det för resten. En stor del av ett yrkes kompetens består i en terminologi som håller oinvigda på avstånd.

Hexansyra

De neutrala fetter, triglycerider, som vi både äter och kan lagra är långt mer varierande. De byggs av tre fettsyror, sinsemellan lika eller olika, bundna till en glycerolmolekyl, en slags bärare som håller samman och organiserar dem. Praktiskt taget all energi i en triglycerid finns att hämta från fettsyrorna, glycerolens bidrag är obetydligt och kompenseras mer än väl av att ny glycerol hela tiden måste nybildas när fettsyror ska återkombineras till triglycerider, något som sker flera gånger i en fettsyras ”liv”. För att göra en rättvisande jämförelse väljer jag en okomplicerad fettsyra med 6 kolatomer, den mättade hexansyran (hexan betyder 6). Dess summaformel är C6H12O2, märk likheten med monosackariden ovan!

Den övre av de båda framställningarna i bilden används gärna av kemister, de har kommit överens om att i varje ”vinkel” och änden av strecken finns en kolatom. Varje kolatom i vinklarna har sällskap av ett par väteatomer. Kolatomen i änden till vänster skiljer sig från de andra, den har tre väteatomer som sällskap. Den kallas metyländen och är en slags kemisk ”punkt”, ett avslut. Läser du om metylering i t.ex. DNA är det nästan samma sak, något som sätter in ett avslutande skiljetecken i den långa mening som kallas DNA.

Nu kan du ana vari skillnaden i energiinnehåll består, särskilt om du tänker på att all energimetabolism i slutändan bildar vatten (H2O) och koldioxid (CO2).

Att räkna mängder av ämnen i gram känns vardagligt och naturligt, men inte för kemister. Eftersom de ofta betraktar molekyler och deras inbördes reaktionen mycket närsynt väljer de ett helt annat mått, mol*. Avogadros tal** är en konstant som binder samman antalet atomer/molekyler av ett ämne med dess atom/molekylvikt.

Varje grundämne har en atomvikt som i huvudsak beror på atomkärnans massa, elektronernas bidrag är oftast försumbart. För kol använder vi talet 12, väte har 1 och syre 16. Då atomer i naturen visar små skillnader i sina atomkärnor så är dessa tal inte exakta utan varierar något men är alltid något större än de jag angett. (Irriterande fråga: Varför är de större?)

När vi adderar atomvikterna i en glukosmolekyl blir det (6×12 + 12×1 + 6×16) = 180. Nu är det så finurligt bestämt att 180 gram glukos innehåller 6,02 x 1023 ** molekyler och därför är 1 mol. Vid samma uträkning på hexansyra, den mättade fettsyra som har 6 kol, blir molvikten 116 gram.

I Review of Medical Physiology av William F. Ganong, 20de upplagan, finns ytterligare uppgifter vi behöver.

  • 1 mol hexansyra (116 gram) ger 44 mol ATP*
  • 1 mol glukos (180 gram) ger 38 mol ATP

100 gram glukos ger alltså ungefär 21,1 mol ATP medan samma massa av hexansyra presterar inte mindre än 37,9 mol ATP.

När vi utvinner energi ur glukos resp. hexansyra sker det genom lång rad reaktioner som resulterar i ATP, vatten och koldioxid. Både glukos och hexansyra har samma antal kol och väte men olika antal syre, glukosen har tre gånger så många. Det betyder att den redan är avsevärt mer oxiderad redan från start.

  • Som regel kan man betrakta andelen ”rena” kol-väte-bindningar som mått på det utvinningsbara energiinnehållet i en molekyl.
  • Alla fettsyror innehåller alltid exakt 2 syre, vilket innebär att energibidraget från en lång fettsyra är större än från en kortare.

Till detta kommer att enskilda glukosmolekyler aldrig kan uppträda koncentrerat i kroppen utan att skada oss. I hela blodmängden på 5-6 liter bör det inte varaktigt finnas nämnvärt mer än 5 gram glukos, 1 gram per liter = 1 promille. En fiktiv person på 70 kg skulle, givet att glukosen kan slås ut över hela kroppsmassan, kunna lagra 70 gram glukos.

Turligt nog är verkligheten annorlunda, glukos kombineras till långa grenade kedjor, glykogen, som lagras i muskler och levern, sammanlagt cirka 500 gram/2000 kcal. Koncentrationen kan ökas avsevärt utan att skada våra celler då det är ändarna på glykogenkedjorna som kan ställa till problem, och de är långt färre än antalet glukosmolekyler. Trots allt kräver detta glykogen en del vatten för att späda ut det till ofarliga koncentrationer. Ett komplett glykogenförråd väger då ungefär 2 kilo.


*) Mol är inte bundet till enbart atomer och molekyler utan kan användas för att räkna t.ex. antalet fotoner, ATP och annat som finns i oerhört stora antal.

**) Avogadros tal = 6,02 x 1023 = 602 000 000 000 000 000 000 000

***) ATP, adenosintrifosfat, är en grundläggande energibärare som produceras i cellernas mitokondrier ursprungligen från den mat vi äter eller återvinner från diverse lager i kroppen. ATP är en gemensam energivaluta som våra celler använder.

Jag ifrågasätter inte att vi använder och behöver små mängder glukos i metabolismen (ämnesomsättningen), vad jag däremot noterar är att inga seriösa biokemiböcker betraktar några som helst kolhydrater som essentiella (livsnödvändiga) att äta, inte ens under speciella villkor (conditionally essential).

I motsats till detta tycks alla lekmannaböcker om näringslära av någon outgrundlig anledning börja sina utläggningar med kolhydrater!

Varje ämne i våra kroppar har ett ursprung i fotosyntesen som producerar mono-, di– och polysackarider ur kol, vatten samt energi från ljusets fotoner. Ur dessa bildar olika bakterier och högre livsformer mer komplexa ämnen, många av dem tillsammans med mineraler.

alfa-linolensyra

Bilden till vänster visar ett för människor essentiellt ämne, omega-3-fettsyran alfa-linolensyra med 18 kol i kedjan. Den används som råmaterial för att bygga andra och längre kolkedjor, EPA med 20 och DHA med 22 kol. Vi kan med fördel äta de senare direkt, de finns t.ex. i ishavsfisk.

Det som gör de tre nämnda fettsyrorna viktiga för oss människor är den alldeles speciella krökningen som gör att de något liknar en metkrok. I den lilla kemiska skalan är inte bara ingående grundämnenas proportioner och mängder viktiga. Det gäller också hur de sammanfogas, i vilken ordning det sker samt deras geometriska former.

 

Proteiner (egentligen dess byggelement aminosyror) är förädlade med kolhydrater i botten och den processen kan vändas så snart vi har mer aminosyror tillgängliga i mat och kropp än vi behöver. Det sker alltid när vi äter så mycket protein att det nyttjas som energi.

Då bryts överflödet av aminosyror ner till kvävehaltiga avfallsprodukter, som filtreras bort i urinen, resten blir till större delen glukos, en mindre del ketoner. Glukosen hamnar i blodomloppet tillsammans med och oskiljaktlig från de som kommer från mat varifrån den fördelas efter behov.

Även fett bidrar med små mängder glukos när triglyceriderna spjälkas till tre fettsyror samt en glycerolmolekyl. Det sker t.ex. när en fettmolekyl avlämnas av en kylomikron, VLDL eller annat fettbärande lipoprotein vid målet, vare sig det är en muskel– eller fettcell. En komplett fettmolekyl är helt enkelt för stor för att komma in i målcellen.

Den avspjälkade glycerolmolekylen sköljs helt enkelt vidare av blodet och återvinns i levern till glukos. Ju kortkedjigare fetter vi äter desto fler glycerolmolekyler blir det över.

Om någon finner uppgifter i seriös biokemilitteratur som visar att kolhydrater eller någon av dess monosackarider är essentiella att äta så uppskattar jag att få veta det, antingen i en kommentar eller via mail till min adress som finns högt uppe till vänster på sidan.

Kan det vara när mer än hälften av energin men ingen essentiell (livsnödvändig) näring kommer från något vi bevisligen klarar oss utan?

Det finns ett antal grundläggande ämnen vi ovillkorligen måste äta då vi inte klarar att bilda dem själva. Det allra viktigaste är vatten, utan det dör vi inom några få dagar, snabbare om det är mycket varmt. Resten kan vi klara oss utan i flera veckor, uppåt ett par månader.

Förr eller senare behöver vi essentiella ämnen, t.ex. aminosyror (protein), fettsyror, mineraler och vitaminer. I praktiken äter vi sådant både dagligen och ofta onödigt mycket.

Glukos fruktos sackaros

Bilden visar hur en glukos– och en fruktosmolekyl bygger upp vanligt vitt socker, sackaros. När vi äter sackaros sker det motsatta, enzymer sätter in en vattenmolekyl i skarven (hydrolyserar) och delar den i sina monosackarider innan de tas upp i tarmen.

Märk väl att fruktosen inte fyller några näringsmässiga behov i kroppen, den ställer mest till med problem då den lättare än glukos klibbar fast vid proteiner och höjer blodets HbA1c (”långtidsblodsocker”), dessutom blir det lätt fett i levern. Detta kallas NAFLD, Non Alcoholic Fatty Liver Disease, en icke alkoholberoende leverförfettning.

Något vi använder i liten omfattning men som vuxna inte behöver äta, då det alltid finns ”inbyggt” i den övriga maten, är glukos. Glukos är en av tre monosackarider som bygger kolhydrater.

Min åsikt är att mat som består av 50-70E% kolhydrater är ”extrem” i sin ensidighet.

vk-torrfoder-diabetesrisk-fo%cc%88r-katter

Syntolkning av bild:

Torrfoder diabetesrisk för katter

Katter som främst äter torrfoder löper större risk att drabbas av diabetes. Men övervikt är den största riskfaktorn, enligt en studie på drygt 2 000 katter som gjorts av Sveriges lantbruksuniversitet (SLU).

Källa: Västerbottens-Kuriren

Katter är rovdjur och vare sig vegetarianer eller ens allätare. De gnager i sig en del växtdelar, kattgräs, för att kunna bilda bollar av osmältbara ämnen som de sedan spyr upp. I övrigt har de inget näringsmässigt utbyte av växtdelar.

Studien från SLU noterar att det finns en koppling mellan katters övervikt och diabetes, men om deras slutsats är så kategorisk som VK-texten antyder är inte lätt att veta utan att ha den tillgänglig.

VK skriver: Att övervikt kan leda till diabetes är inte så förvånande.

Den korta notisen avslutas nämligen på följande sätt:

Hos tjocka katter syntes inget samband mellan torrfoder och diabetes, vilket antas bero på att övervikten i sig är en så stor riskfaktor.

Sannolikt grundas optimal hälsa av en artegen kost, det katter och för den delen alla andra djur är evolutionärt anpassade till. På grund av tillverkningsmässiga, hållbarhet samt ekonomiska skäl används en för katter onaturlig mängd kolhydrater i framställningen av torrfoder. Det överbelastar och utmattar delar av katternas metabolism då de inte är anpassade för detta.

Intressant nog gör man även följande observation:

Hos tjocka katter syntes inget samband mellan torrfoder och diabetes, vilket antas bero på att övervikten i sig är en så stor riskfaktor.

Hur påverkar man nu detta? Studien visar på lösningen även om man uttrycker sig bakvänt.

Innekatter löper större risk att drabbas än katter som går ute.

Min tolkning: Katter som äter (mer) arteget har lägre diabetesrisk.

Ständigt matas vi med åsikten att övervikt och fetma förorsakar diabetes typ 2, sockersjuka. Inte bara i populärpress utan även inom professionen har denna tågordning accepterats som ovedersäglig sanning som sällan eller aldrig ifrågasätts.

Diabetes typ 2 kännetecknas av att kroppen inte förmår använda kolhydrater i samma utsträckning som friska människor vilket innebär att blodsockret ökar. Man kan enkelt mäta detta genom ett stick i fingret, bloddroppen sugs upp i en teststicka och inom några få sekunder får vi ett mätvärde som tumregelsmässigt motsvarar antalet gram glukos som finns i totala blodvolymen (drygt 5 liter, kvinnor något mindre och män uppåt 6 liter) hos en normalviktig person på cirka 70 kg.

  • En frisk persons blodsocker efter nattfasta är cirka 4-6 mmol/l och upp till 8,7 mmol/l efter en måltid.
  • Mäter man vid två skilda tillfällen ett fasteblodsocker som är >7,0 mmol/l, alternativt att det efter en måltid stiger till >12,2 mmol/l anses man vara diabetiker. Dessa värden kan variera något beroende på källa.
  • Däremellan finns en gråzon där man kan betraktas som prediabetiker, en diabetiker i vardande.
  • Ett standardiserat och klart bättre test är glukosbelastning. Man dricker 75 gram glukos upplöst i vatten och mäter blodsockret efter 2 timmar.

En läkare försåg mig med en studie i avsikt att stödja den konventionella meningen, Changes in BMI and Weight Before and After the Development of Type 2 Diabetes, Helen C. Looker, William C. Knowler och Robert L. Hanson, publicerad i Diabetes Care 2001. Den bygger på data från undersökningar mellan åren 1965 och 2000 vid Gila River Community i Arizona. Trakten bebos av Pima-indianer med unikt hög förekomst av diabetes typ 2. Bland dessa fann man 816 personer som under dessa 35 år befanns ha diabetes typ 2, data kommer från sammanlagt 4226 undersökningar.

Abstract redovisar bland annat:

Before diagnosis of diabetes, there were steady gains in weight: mean BMI climbed between 0.43 and 0.71 kg/m2 per year. After diagnosis, the weight gain declined, and weight loss was generally seen; the mean rate of change of BMI ranged between 􏰌0.61 and 􏰎0.22 kg/m2 per year.

Min tolkning: Före diabetesdiagnosen observerade man en stadig viktökning: medel-BMI ökade mellan 0,43 och 0,71 kg/m2 per år. Efter diagnosen avtog viktökningen till mellan 0,61 och 0,22 kg/m2 per år.

Jaha, dags att acceptera den förhärskande åsikten att övervikt och fetma föregår diabetes typ 2? Nja, inte så fort, låt oss se om studien innehåller data som visar när diabetesutvecklingen gick igång.

Because weight loss in individuals with diabetes results in short-term improvements in glycemic control has become a central strand of initial management of type 2 diabetes. However, good glycemic control is often achieved at the cost of weight gain.

Min tolkning: Då viktnedgång hos diabetiker (typ 2) resulterar i kortvarig förbättrad blodsockerkontroll har denna (viktnedgången) blivit central vid den initiala behandlingen av diabetes typ 2. Emellertid uppnår man ofta god blodsockerkontroll på bekostnad av viktuppgång.

Dessa två meningar innehåller oerhört viktig information, för att förstå dem kan det vara på plats med en repetition av några grundläggande samband.

  • Utan att gå närmare in på mekanismerna kan vi konstatera att insulinpåslag hämmar kroppens fettutnyttjande* samt sänker blodsockret genom att aktivera lever, fettväv och muskler till ett ökat glukosupptag**. Om leverns och musklernas glykogenförråd är fulla eller nästintill gäller det att man är tillräckligt fysiskt aktiv för att inflödet av glukos till musklerna skall fortsätta. Om inte detta sker kommer kroppens homeostas (jämviktsreglering) att öka fettsyraproduktionen och lagring i såväl lever som fettväv (insulin är anabolt, ett byggande hormon medan glukagon är katabolt, nedbrytande/utnyttjande).
  • Insulin är ett hormon med många uppgifter, men vanligen får det en trivial beskrivning som ”en nyckel som öppnar celler för glukos”. Innan detta sker reglerar det dessutom glukagon, ett annat hormon från samma cellsamlingar, de Langerhanska öarna i bukspottkörteln. Glukagon har effekter som till delar är motsatta insulinet. Medan insulin kan sänka blodsockret och därmed dess energibärande förmåga kan glukagonet frisätta glukos samt höjer blodets energiinnehåll från fettväven. Båda ingår i regleringen av energibärande molekyler i blodet där insulin är styrande då den reagerar på blodsockernivån.
  • Om och när glukos i en cell ”byggs om” till fettsyror/fett minskar glukoskoncentrationen och tillåter fler glukosmolekyler att strömma in tillsammans med vardera ungefär 190 vattenmolekyler.
  • Hos en frisk person med goda kostvanor och anpassad fysisk aktivitet fungerar homeostasen, tillfälliga över- och underskott av t.ex. mat och motion utjämnas över tid, han/hon förblir rimligt viktstabil.

Det finns endast ett hormon, insulin, som ”sänker blodsockret” medan fyra av större betydelse kan höja det vid behov, glukagon, kortisol, adrenalin samt tillväxthormon. Till detta kommer katekolaminerna (”adrenalinsläktingar”) L-tyrosin, L-DOPA, dopamin samt noradrenalin. Glukagon kan aktivera fettmetabolismen och därför tillföra energi från ett mycket stort energilager, fettväven.

  • Evolutionen har försett oss med betydligt större beredskap för att höja blodsocker snarare än att som nu ständigt behöva sänka det. Om ett ensamt glukossänkande system överutnyttjas är det inte att förvåna om det i något avseende fallerar i förtid.

Friska människor avger insulinet i omgångar. Först en kortvarig dos som, vid behov, följs av en mindre drastisk men under längre tid. Se den övre kurvan i bilden.

Insulin response healthy vs. diabetic

Grafiken återger principen snarare än faktiska värden. Många källor visar att den första dosen hos friska är betydligt högre. Typiskt hos diabetiker typ 2 är att dosen startar mycket mesigare och övergår i ett långvarigt skede, se nedre kurvan.

Insulinet räcker med råge att dämpa glukagonet vilket innebär att fettmetabolismen blir knäsatt. Gradvis ackumuleras då fett som följd av att det inte används.

Det är både teoretiskt och praktiskt omöjligt att med vetenskaplig stringens avgöra om en studie visar ”sanningen” då det förutsätter att vi entydigt känner den i förväg. Och då är ju studien meningslös, den tillför inget nytt. Det enda vi kan ta reda på är om en studie falsifierar en hypotes eller ej. En ännu ej falsifierad hypotes kan vara en del av en vetenskaplig teori medan en vetenskaplig teori, hur elegant den än verkar, faller om någon av dess hypoteser falsifieras.

Fråga är om min hypotes att diabetesutvecklingen föregår övervikt/fetma falsifieras av studiens uppgifter, låt oss se efter.

These examinations include anthropometric measures, funduscopy, urinalysis, and measurement of plasma glucose levels. Diabetes was diagnosed by a 75-g oral glucose tolerance test according to World Health Organization guidelines or the presence of a documented clinical diagnosis.

Min tolkning: Studien baseras på kroppsmåttögonundersökningar (av mycket små blodkärl i ögonbotten), urinprov och blodsockernivåer. Diabetes diagnosticerades genom glukosbelastning eller dokumenterad klinisk analys.

Ingenstans i texten nämns andra faktorer att avgöra om en person är diabetiker eller ej. Förekomst av prediabetes redovisas inte!

To improve accuracy on duration of diabetes, selection was limited to individuals who had undergone an examination within 4 years preceding diagnosis in which criteria for diabetes had not been met (a non-diabetic examination). Therefore, the maximum period of possible undiagnosed diabetes was 4 years.

Min tolkning: För att öka precisionen av den tid diabetesen varit aktiv begränsades deltagarurvalet till de som genomgått en undersökning utan diabetesdiagnos (a non-diabetic examination) under fyraårsperioden som föregick diagnosen. Den maximala tiden av oupptäckt diabetes typ 2 var då fyra år.

Nå, stämmer det? Ingenstans i denna studie nämns hur lång tid diabetes typ 2 tar för att utvecklas från de allra första stapplande stegen, via prediabetestiden och fram till den dag den diagnosticeras. Det är välkänt att en betydande andel diabetiker typ 2 visar tecken på en eller flera av de så kallade senkomplikationerna redan vid diagnostillfället.

  • Ponera att en person är prediabetiker men hamnar i gråzonen under diagnoskriterierna fyra år före diagnostillfället. Han/hon klassas då som ickediabetiker. Som jag ser det bör prediabetes räknas in i förloppstiden då prediabetiker möter de kriterier som krävs för att lagra överskottsglukos som fettväv.

Redan när blodet varaktigt innehåller 1-2 gram extra glukos inleds senkomplikationerna, om än i måttlig omfattning. Det innebär att redan om blodsockret under betydande tid är 20-40% högre än hos en frisk inleder det ett ”naturalförlopp” som ofta hamnar i amputationer, blindhet och hjärt- och kärlsjukdomar. Av det skälet är det logiskt att homeostasens processer omvandlar överflödsglukos till något användbart och dessutom relativt ofarligt, nämligen naturligt animaliskt kroppsfett.

  • En frisk och normalbyggd människa kan ha 15 kg fett fördelat på många olika organ, inklusive hjärnan. Skulle fettförrådet öka 20-40% (i samma storleksordning som den förhöjda blodsockernivå som ger allvarliga senkomplikationer!) innebär det 3-6 kg, en mängd som knappast är hälsoskadligt, snarare tvärtom.

I studien finns inga uppgifter om hur lång prediabetestiden kan vara, är den alls studerad?

Som jag ser det är påståendet om att den odiagnosticerade diabetestiden är max 4 år inte korrekt.

Låt oss studera Tabell 1  – Characteristics of participants by duration of diabetes in years.

Tabell 1

Andelen män är av någon oredovisad anledning så låg som runt 30%, finns några skäl till detta? Kan det påverka utfallet i någon riktning? (Se tredje kolumnen under pilen)

Intressant är data som inte finns, lägg märke till det inramade utsnittet till höger, där finns bara streck. Man har inte mätt njur– och ögonhälsa förrän efter diabetesdiagnosen! Siffrorna för njurskador (nephropathy) under de första 10 åren efter diagnosen innehåller avgörande information. Under de första två åren redovisas att 2,1% har njurskador, märkligt nog stiger den bara sakta till relativt måttliga 2,9% fortfarande efter 10 år för att sedan hoppa till rejält under de följande åren. Är det någon som tror att nefropatin var obefintlig fram till diagnosen för att sedan stiga i lugn takt under 10 år och sedan fyrdubblas under perioden 10-15 år? I studien motiverar man frånvaron av mätvärden för njur- och ögonskador på följande sätt:

Retinopathy and nephropathy are rare among Pima Indians without diabetes; therefore, analyses of these complications were restricted to examinations after the diagnosis of diabetes (Table 1).

Min tolkning: Retinopati och neuropati är sällsynta bland Pima-indianer utan diabetes, analyser av dessa komplikationer begränsades (på grund av detta?) till efter diabetesdiagnosen.

Om det stämmer är det anmärkningsvärt att nefropatin hoppar till 2,1% under den tvååriga perioden efter diagnosen och förblir i samma storleksordning upp till tio år.

Nefropati är en logisk följd av varaktigt förhöjt blodsocker. De studerade Pima-indianerna har en låg ”naturlig” förekomst av njurskador och den plötsliga ökningen av dessa visar att blodsockret mycket väl kan ha varit förhöjt många år före diagnosen och en följd av pågående diabetesutveckling. Ett liknande mönster kan mycket väl gälla ögonskadorna.


*) Med fettutnyttjande menar jag kroppens användning av fetter/fettsyror som ger kroppens celler användbar energi i form av ADP/ATP, den grundläggande energivalutan.

**) Glukosupptag i celler är passivt i betydelsen att den sker först när det finns en koncentrationsgradient, från högre till lägre koncentration.

***) Många källor menar att diabetiker typ 2 åtminstone under den inledande sjukdomsutvecklingen producerar betydligt större mängder insulin än friska. Detta kan, då insulinets unika blodsockersänkande förmåga saknar backup, leda till s.k. betacellsvikt som förekommer bland ”mogna” diabetiker typ 2, de som både reagerar dåligt på insulin och dessutom producerar så lite att man påminner om diabetiker typ 1, de insulinberoende.