Arkiv för kategori ‘Diabetisk ketoacidos’

HbA1c är ett labbvärde som visar hur mycket proteinet A1c i blodet blivit glykerat, ”nedkletat” med en monosackarid*. Ungefär som när man blir klistrig om fingrarna av att doppa dem i en sockerlösning eller äter ett Wienerbröd.

  • I kemins underbara värld finns flera sätt för atomer och molekyler att ”umgås” på. Ett av de allra vanligaste i vår metabolism finns i R-OH-grupper. Låter lite knepigt men är ganska lätt att förstå med lite hjälp.
  • R i dessa sammanhang kan tolkas som ”Resten av molekylen”, bindestrecket symboliserar en bindning medan O och H har sin vanliga betydelse, en syre– och en vätemolekyl.
  • En helt vanlig vattenmolekyl är exempel på detta, H-OH eller H2O som vi vanligen skriver. OH-grupper i molekyler gör att de gärna ”umgås” med vatten och ju fler de är desto lättare. Det låter ju smidigt, men har en avsevärd nackdel när man ser närsynt på det.
  • En molekyl som helhet är elektriskt neutral, men inte dess beståndsdelar. Slutresultatet blir att den osymmetriska laddningsfördelningen i en OH-grupp attraheras till motsatta osymmetrier i andra molekyler. Ju fler OH-grupper ett ämne har desto större chans  att de hakar fast vid proteiner som är mycket välförsedda med lokala osymmetrier i laddningarna.
  • Exempel på vanliga ämnen i blodet som har en osedvanligt stor andel OH-grupper är monosackariderna glukos, fruktos och galaktos. I dessa molekyler med 6 kol finns hela 5 OH-grupper, hela tiden kapabla att haka fast vid proteiner.
  • Av någon anledning jag inte känner är fruktos flera gånger mer benägen att glykera blodproteinet A1c än glukos.

Följden blir att proteiner med dessa påhäng inte fungerar som de ska och i sin tur kan fastna vid andra. Indirekt kan HbA1c uppfattas som ett väldigt ungefärligt mått på medelblodsockret under några veckor, men det säger inte hur svajigt det varit. Om blodsockret varit en blandning mellan många riktigt låga och några få höga så kan HbA1c vara ”falskt bra” trots att ytterligheterna skapat problem.

  • Glykering, oavsiktlig och slumpmässig försockring, drabbar i princip alla vävnader i kroppen, inte bara blodet.
  • Glykosylering är en noga reglerad process där enzymer gör jobbet och sätter monosackariden där den hör hemma.

Det finns några strategier att förbättra HbA1c, via motion/kostbehandling och insulindosering.

    1. Större insulindoser ger lägre blodsocker och HbA1c men hämmar även kroppens normala mekanismer att förse blodet med energibärare som fettsyror/ketoner samt glukos från egna lager som fettväv och leverglykogen. Märk väl att fettsyror, hur långa de än är, bara har en OH-grupp. Två av ketonerna, acetoacetat och beta-hydroxybutyrat, har en vardera medan aceton har ingen.
    2. Fysisk aktivitet sänker på sikt mängden cirkulerande blodsocker och tär även på befintligt muskel- och leverglykogen så där finns plats att ta upp glukos även efter att den fysiska aktiviteten (arbete/motion) upphör. Detta resulterar i lägre HbA1c. Något många förvånas över, även bland diabetesvårdens personal, är att fysisk aktivitet momentant ökar blodsockernivån.
    3. Kostbehandling med reducerad mängd kolhydrater som vid LCHF, gärna kombinerat med fasta, minskar mängden tillfört och därmed även cirkulerande blodsocker och ger lägre HbA1c.

Under senare tid har Diabetisk Ketoacidos, DKA, hamnat i fokus. Det är en följd av insulinbrist hos diabetiker typ 1** och yttrar sig i att blodets pH-buffrande förmåga uttöms och dess pH sjunker under den normala nivån. Om detta inte behandlas kan tillståndet snabbt bli allvarligt, till och med dödligt.

De som kritiserar användning av LCHF för insulinbehandlade diabetiker, främst då typ 1, menar att den låga mängden kolhydrater i kosten kräver så små mängder insulin att det kan leda till insulinbrist och DKA. Insulinets akut viktigaste uppgift är att styra sin ”hormonella motsats”, glukagon. När man äter kolhydrater förbrukas en motsvarande mängd insulin och ”nettomängden” som blir kvar för att styra glukagonet blir långt mindre än doseringen antyder. Å andra sidan, äter man lågkolhydratkost kommer en större andel av insulinet att användas för regleringen av glukagonet.

Även protein kräver insulin och den som till äventyrs är rädd för att insulinmängden blir alltförför låg kan lägga till extra protein. De kan på sätt och vis liknas vid ”långsamma kolhydrater” då det tar rejält med tid från passagen in via munnen till dess de spjälkats färdigt. De aminosyror, proteiners byggstenar, som blir energi strippas på sitt kvävehaltiga innehåll och ger till mer än 3/4 glukos.

Lägg märke till den gråa ytan som omger medelvärdet. Runt 4.5 % finns en rejäl riskminskning, så stor att den sjunker under det grafen kan visa. Samtidigt finns de vars risk är nästan fördubblad vid samma HbA1c.

Min hypotes är att de som når ”bra” HbA1c med intensiv medicinbehandling och åtföljande blodsockersvängningar löper större risker än de med en ”mjuk blodsockerkontroll” med LCHF.

Om du finner felaktigheter eller oklarheter i det jag skriver så är jag tacksam om du meddelar mig i kommentar eller via mail till erik.matfrisk (at) gmail (dot) com


Fördjupad läsning för den vetgirige: Högt blodsocker skadar proteiner Lägg särskilt märke till att glykering drabbar mycket långsamomsatt kollagen, en viktig komponent i stödjevävnad som ben, hud, senor och blodkärlsväggar.

Metabol flexibilitet  Hur kroppen utnyttjar mer energi än blodsocker, t.ex. det fett du gärna vill bli kvitt.

*) Den monosackarid man mäter i blodet är glukos, men den överlägset mest glykeringsbenägna är fruktos, ena halvan av vanligt vitt socker samt den som ger frukter deras sötma.

**) Liknande situationer kan uppkomma vid allvarlig alkoholförgiftning, ketoacidos, och vid allvarlig störning i njurfunktionen, laktacidos. Den senare kan uppkomma i samband med behandling av diabetes typ 2 med Metformin. Se 4 fallrapporter i Läkartidningen.

Det farliga på lång sikt för diabetiker typ 2 är höga blodsockervärden, vi är ”sockersjuka”.

Det akut livsfarliga för diabetiker typ 1, redan på kort sikt, är att brist på insulin innebär att alfacellerna i bukspottkörteln förlorar den styrning som kommer från insulin.

  • De Langerhanska öarna i bukspottkörteln innehåller bland annat insulinproducerande betaceller samt, runt om dem, glukagonproducerande alfaceller. Betaceller kan mäta blodsockerhalten och frisätta samt nyproducera motsvarande behov av insulin.
  • Alfacellerna är ”blinda” för det mesta så när som på att de tar intryck av det förbipasserande insulinet. Deras ”gaspedal” är i botten till dess insulinet säger till dem att lugna ner sig. Glukagonet signalerar till levern att frisätta glukos ur dess glykogenlager samt stimulerar även fettmetabolismen. Hos en ”frisk” människa utan insulinproblem är detta en utmärkt metod att förse vårt blod med energi från våra egna lager, t.ex. fettväven, även om vi inte har mat tillgängligt, t.ex. under natt och morgontimmar när det vanligen inte finns så mycket mat i vår tunntarm.

Hos den som saknar eller har för låg insulinproduktion fungerar inte regleringen av glukagonet och därför spinner fettmetabolismen på högvarv samtidigt som levern frisätter glukos, båda i flerfalt större mängder än kroppen kan använda.

Den oreglerade fettmetabolismen producerar förutom fria fettsyror även surgörande ketoner i en mängd som blodets buffertsystem inte klarar. Dess pH, ett av kroppens noggrannaste reglerade värden, sjunker så lågt att det blir livshotande. Detta kallas diabetisk ketoacidos, DKA. Samtidigt försöker kroppen göra sig av med överskottet av både glukos och ketoner genom att kissa ut överskotten vilket ger vätskebrist som i sig kan vara livshotande.

Av dessa skäl menar jag att diabetes typ 1 är en akut livshotande störning i fettmetabolismen.

  • 400px-insulin_penMan sköter diabetes typ 1 genom att göra det bukspottkörteln gör hos friska, mäter blodsockret och injicerar insulin efter behov.
  • Detta blir betydligt lättare om man äter lågkolhydratkost, LCHF, då man slipper parera för att maten ger stora glukosvariationer i blodet.

Lagom till LCHF-träffen i Säffle har LCHF-magasinet släppt senaste numret, #2/2016

image

Mitt bidrag om ketoacidos och LCHF presenterades på omslaget.

Hanås - ketonrisk vid insulinpump

Jag har de senaste dagarna snöat in på Ragnar Hanås bok Typ 1 Diabetes hos barn, ungdomar och unga vuxna. Här finns ett par fina observationer som kan kombineras till ett förslag.

Insulinpumpar har många förespråkare då de ger stora friheter, man behöver inte själv hålla tider för injektioner eller ha med sig en väska med utrustning. Föräldrar till barn med diabetes typ 1 kan slappna av lite och behöver inte känna en gnagande oro för att barnen eller de som ska hålla koll på insulinanvändningen inte följer schemat eller vet hur man anpassar sig till verklighetens krav. Men det finns nackdelar som man inte kan bortse från vilket Hanås tydligt framhåller.

För synskadade med rösttolkning: ”När du använder insulinpump har du en större risk att utveckla ketonförgiftning (ketoacidos) eftersom du har en mycket liten insulindepå. Ketoner är ett tecken på utebliven tillförsel av insulinet och talar för att något är fel på pumpen, slangen eller nålen.”

Hanås - Det räcker med en mycket liten egen insulinproduktionFör synskadade med rösttolkning: ”Det räcker med en mycket liten egen insulinproduktion* för att motverka bildningen av ketoner (diabetes-syror) genom att insulinet hämmar nedbrytningen av fettet till fettsyror (som sedan kan omvandlas till ketoner i levern). Den som har kvar en viss egen insulinproduktion under många år har därför ett visst ”skydd” mot syra-förgiftning. Vid svår stress eller en infektion får man dock en relativ insulinbrist eftersom behovet av insulin i denna situation ökar starkt. Den stegrade halten av fr a kortison och adrenalin medför en ökad produktion av ketoner genom en ökad nedbrytning av fett till fettsyror.”

Kombinera fördelarna genom att ”grunda” med ett långtidsverkande insulin som något efterliknar en liten egen insulinproduktion och dämpar bukspottkörtelns alfaceller från att producera onödigt mycket glukagon som aktiverar hög glukosfrisättning och gynnar en alltför aktiv fettmetabolism som leder till ostyrd ketonproduktion.

  • Ketoner** i rimlig omfattning är fullständigt normalt och önskvärt för att på ett dynamiskt sätt kunna utnyttja kroppens egna lager av energiråvaror. Problemet för insulinberoende diabetiker typ 1 är att när insulinnivån sjunker alltför lågt tappar alfacellerna sin styrning***.

Om en del av det totala behovet består av långtidsverkande insulin så minskar eller försvinner risken för ketoacidos på grund av de pumpfel som Hanås räknar upp. Både barn och föräldrar bör kunna sova lugnare på nätterna utan oro för att blodsockret blir för lågt (hypoglykemi på grund av extra insulin ”för säkerhets skull”) eller pumporsakad ketoacidos (mycket höga ketoner i kombination med hyperglykemi).


*) Eget kvarvarande insulin hos ”ettor” efter 40 år!

**) Om ketoner, för den misstänksamme

***) All diabetes framställs som en oförmåga att hantera och utnyttja blodsocker, men det akut livshotande för diabetiker typ 1 är den ohämmade fettmetabolismen när den dämpande signalen till alfacellerna via hormonet insulin saknas.

Mer tänkvärt från Ragnar Hanås Typ 1 Diabetes hos barn, ungdomar och unga vuxna.

Hanås - pump och risk för ketoacidos

”För de med synproblem och programvara för uppläsning: Pumpanvändare har en ökad risk för ketonförgiftning (ketoacidos) om det blir ett avbrott i insulintillförseln eftersom insulindepån är så liten. Ketoacidos måste behandlas på sjukhus med intravenöst insulin och vätska. För att undvika ketoacidos ska du alltid ta extra insulin med en penna eller spruta när du har högt blodsocker och ketoner i blodet eller urinen.”

I en handbok för behandling av diabetes typ 1 i länder med mindre resurser beskriver Hanås med kollegor följande på sidan 11/56:

Managing DKA* includes the following components: • Initial assessment and monitoring • Correction of shock • Correction of fluid replacement • Insulin treatment • Potassium replacement • Role of bicarbonate • Treatment of infection (if present) • Management of cerebral oedema • Monitoring of the child • Transitioning to subcutaneous insulin.

Källa: POCKETBOOK FOR MANAGEMENT OF DIABETES IN CHILDHOOD AND ADOLESCENCE IN UNDER-RESOURCED COUNTRIES Ladda ner

Vätskeersättning kommer före insulinet i handlingsbeskrivningen.

  • Rehydrate the child with Normal (0.9%) Saline. Aim to provide maintenance and to replace any deficit (up to 10%) over 48 hours. This volume should be distributed evenly over the 48 hours.
  • Do not add the urine output to the replacement volume
  • Reassess clinical hydration regularly
  • Once the blood glucose level is <15 mmol/l (<270 mg/dl), add glucose (also known as dextrose) to the saline (add 100ml of 50% glucose/dextrose to every litre of saline, or use 5% glucose/dextrose saline)
  • If intravenous/osseous access is not available, rehydrate orally with Oral Rehydration Solution (ORS). This can be done by nasogastric tube at a constant rate over 48 hours. If a nasogastric tube is not available, give ORS by oral sips at a rate of 5 ml/kg per hour
  • When oral fluid is tolerated, IV fluid should be reduced accordingly, so that the total amount of fluid given to the patient per hour does not exceed the calculated hourly rehydration volume

På sidorna 19 och 20 finns handlingsscheman för normal och vård av DKA under enklare förhållanden. Ingenstans nämns euglykemisk DKA, där ketoacidosen förekommer vid förhållandevis låga blodsockernivåer, under 12 mmol. Detta leder mig att tro att den absoluta risken för detta är oerhört liten.


*) DKA, diabetisk ketoacidos, uppkommer vid tillräckligt långvarig insulinbrist då det motbalanserande hormonet glukagon tappar sin styrning och aktiverar både ökad fettmetabolism och frisättning av glukos från leverglykogen. Reaktionen är helt logisk för ickediabetiker för att vidmakthålla ett kontinuerligt flöde av energibärare i blodet men hos diabetiker typ 1 fallerar styrningen av glukagonproduktionen och såväl ketonproduktion som glukosfrisättning goes bananas.

Ketoner är ämnen där en syreatom är dubbelbunden till en kolatom mellan två andra grupper, här R och R’imgresDen näringsmässigt mest betydelsefulla ketonen är beta-hydroxybutyrat, faktiskt inte en ”renlärig” keton. Namnet låter skrämmande men det är bara internationellt förståelig ”kemiska”.

  • Beta– berättar var det speciella hos ett ämne är beläget.
  • Hydroxy– beskriver en liten grupp atomer som består av en syre- och en väteatom, en OH-grupp.
  • Butyrat visar att det gäller en kolkedja med fyra kol.

Sätt nu samman denna information på samma sätt som vi bygger upp en ekvation ur dess delar. Vi får då en kort kolkedja som skiljer sig från fettsyran n-butansyra (4 kol, smörsyra, bilden nedan) genom att en väteatom invid den andra kolatomen i kedjan (räknat från metyländen, den ”feta” änden) ersätts med en OH-grupp.

N-butansyra

Detta resulterar i beta-hydroxybutyrat, märk den lilla skillnaden mot förra bilden.

Beta-hydroxybutyrat_2

Kort– och medellånga fettsyror har utomordentligt fördelaktiga hälsoegenskaper, de kan bland mycket annat minska eller eliminera epileptiska anfall och dramatiskt förbättra vissa typer av demens. Framförallt korta fettsyror är lösliga i blodet och kan transporteras dit där de behövs, med ett undantag, hjärnan. Där finns blod-hjärnbarriären för att skydda hjärnan och den sätter stopp för fettsyror.

Men den extra OH-gruppen hos beta-hydroxybutyrat förändrar allt. OH-grupper är speciella såtillvida att det endast saknas en väteatom för att bygga en vattenmolekyl, OH-grupper ”umgås” därför gärna med vatten, ju fler OH desto lättare. Beta-hydroxybutyrat har två sådana hydrofila (vattenälskande) grupper och den lilla förändringen gör att ketonen med största lätthet följer blodet vart som helst i kroppen, även genom blod-hjärnbarriären! En av fördelarna hos beta-hydroxybutyrat är att den är nästan lika energität som motsvarande fettsyra utan att, räknat per energi, dra med sig lika mycket syre som glukos.

Med tanke på dessa goda egenskaper finns ingen anledning att ifrågasätta ketoner/ketos? Med ett undantag!

Våra kroppar behöver energigivande råvaror där hormonerna insulin och glukagon i samarbete fungerar som ”trafikvakter” och förser blodet med energi från såväl mat som redan befintliga lager av energi i kroppens vävnader. Hos personer med kraftigt nedsatt eller obefintlig insulinproduktion fungerar inte denna styrning, glukagonet tar överhanden och aktiverar glukosfrisättning och fettmetabolism inklusive ketonproduktion.

Diabetes typ 1 (kraftigt nedsatt eller obefintlig insulinproduktion) är alltså i grunden en dysfunktion (bristande funktion) i fettmetabolismen till skillnad från diabetes typ 2 (”sockersjuka”, åldersdiabetes) där insulin inte får den önskade effekten på upptag av glukos, blodsocker.

Om och när diabetiker typ 1 tappar kontrollen över glukagonproduktionen ökar frisättning av glukos såväl som fria fettsyror och ketoner. Beta-hydroxybutyrat har en karboxylände (COOH) som ger ämnet svagt sura egenskaper vilket i alla ”normala” sammanhang (ketos) saknar betydelse men hos diabetiker typ 1 med nedsatt förmåga att reglera fördelningen av energiråvaror i blodet kan skapa problem i form av DKA, diabetisk ketoacidos.

Insulin har många funktioner i kroppen, men två av dem är särskilt betydelsefulla i detta sammanhang, glukagonstyrning i bukspottkörteln och glukosupptag från blodet.

Varje gång en insulinmolekyl når insulinreceptorn på en mottagarcell ”fastnar” den och dras in i cellen. Det betyder att ju mer glukos vi äter desto mer insulin kommer att förbrukas (dras in i målceller) och påverkar därmed inte glukagonproduktion/frisättning.* Att öka mängden insulin för att försöka uppnå en slags säkerhetsmarginal mot ketoacidos är dömt att misslyckas då man som kompensation, för att inte hamna i insulinkoma, måste öka mängden glukogena delar av maten. Om man gör det kommer en betydande del av insulinet att förbrukas för att hålla blodsockret under kontroll utan att påverka glukagonet och så löper det vidare.

Mer glukos (kolhydrater) i maten kräver mer insulin, det som ”blir över” styr glukagonet.

Min hypotes är att de som injicerar insulin bör ”grunda” med ett långtidsverkande alternativ för att undvika att helt förlora kontrollen över glukagonet. Detta även om man använder insulinpump med snabbverkande insulin då det inte är helt ovanligt med böjda slangar och lossnade infusionsset.

Kroppens funktioner är dynamiskt beroende av varandra och alla statiska resonemang är dömda att fallera i det långa loppet.


Beskrivningen ovan är inte fullständig, fler samband finns men i sammanhanget har de liten betydelse.

*) Detta resonemang gäller för diabetiker som huvudsakligen injicerar insulin. För ”friska” reglerar det egna insulinet glukagonproduktionen direkt i de Langerhanska öarna. Den blir därför mycket mer exakt och därför är det värdefullt att ha en egen produktion, om än liten.

 

DiabetesInControl_logo

Shocking Increase in Adolescent Diabetes Complications

Källa: Diabetes In Control

Min tolkning: Chockerande ökning av diabeteskomplikationer bland unga.

Tidigare talade man om ungdomsdiabetes (typ 1, uttalad insulinbrist) och åldersdiabetes eller sockersjuka (typ 2, nedsatt insulinsvar). Detta beroende på att typ 1 vanligen debuterar i unga år och typ 2 nästan aldrig förekom före medelåldern, oftast senare ändå. Det är två helt skilda åkommor där den akut farliga komponenten för ”ettor” är en nedsatt förmåga att hålla fettmetabolismen under kontroll vilket kan leda till diabetisk ketoacidos, DKA, som är livshotande.

”Tvåor” kännetecknas av att inte på naturlig väg kunna utnyttja blodets innehåll av glukos, blodsocker. Utvecklingen fram till diagnosen tar vanligen många år och är ganska diskret. Ett av de tidiga tecknen är den viktuppgång som kännetecknar 4 av 5 nydiagnosticerade diabetiker typ 2.

Children and adolescents are experiencing complications from diabetes in both type 1 and type 2 before they reach adulthood.

Min tolkning: Barn och tonåringar (adolescents) med diabetes typ 1 såväl som typ 2 får nu komplikationer innan de är vuxna.

En följd av detta är att njurskador inträffar redan tidigt i livet. En studie som publicerades i december 2015 redovisar utvecklingen mellan 2002 till 2013 bland 96171 unga diabetiker. Av dessa diagnosticerades 3161 med njurskador beroende på sin diabetes.

Anmärkningsvärt nog var cirka 21% av de unga diabetikerna inte ”ettor” med insulinbrist vilket innebar att de med stor sannolikhet på grund av sin och/eller familjens livsstil har dragit på sig åldersdiabetes/sockersjuka trots låg ålder.

Bland tvåorna utgjorde 60% flickor och den sammanlagda förekomsten var i antal lågt, 0,38/1000 år 2002 men steg med 75% till 0,67/1000 redan 2006. Anmärkningsvärt nog hade den sjunkit till 0,56/1000 år 2007 för att sedan sjunka ytterligare till 0,49/1000 2013!

There was no difference in prevalence of diabetic nephropathy by diabetes type. … The prevalence of diabetes and diabetic nephropathy markedly increased starting at age 12 years.

Min tolkning: Man fann ingen skillnad i förekomst av njurskador beroende på diabetestyp och njurskadorna ökade markant från 12 års ålder.

Jag har tyvärr inte tillgång till fulltexten och kan därför inte se om man spekulerat i vad som gjort att förekomsten av diabetes typ 2 har minskat under senare år. Vi som är LCHF-are med nedsatt insulinsvar (sockersjuka/åldersdiabetiker alternativt diabetiker typ 2) kan vittna om att vi får ett lägre och jämnare blodsocker med mindre eller ingen medicinering när vi minskar radikalt på kolhydrater i maten.


Prevalence of Diabetes and Diabetic Nephropathy in a Large U.S. Commercially Insured Pediatric Population, 2002-2013. Li L, Jick S, Breitenstein S, Michel A.