Arkiv för kategori ‘Energi’

HbA1c är ett labbvärde som visar hur mycket proteinet A1c i blodet blivit glykerat, ”nedkletat” med en monosackarid*. Ungefär som när man blir klistrig om fingrarna av att doppa dem i en sockerlösning eller äter ett Wienerbröd.

  • I kemins underbara värld finns flera sätt för atomer och molekyler att ”umgås” på. Ett av de allra vanligaste i vår metabolism finns i R-OH-grupper. Låter lite knepigt men är ganska lätt att förstå med lite hjälp.
  • R i dessa sammanhang kan tolkas som ”Resten av molekylen”, bindestrecket symboliserar en bindning medan O och H har sin vanliga betydelse, en syre– och en vätemolekyl.
  • En helt vanlig vattenmolekyl är exempel på detta, H-OH eller H2O som vi vanligen skriver. OH-grupper i molekyler gör att de gärna ”umgås” med vatten och ju fler de är desto lättare. Det låter ju smidigt, men har en avsevärd nackdel när man ser närsynt på det.
  • En molekyl som helhet är elektriskt neutral, men inte dess beståndsdelar. Slutresultatet blir att den osymmetriska laddningsfördelningen i en OH-grupp attraheras till motsatta osymmetrier i andra molekyler. Ju fler OH-grupper ett ämne har desto större chans  att de hakar fast vid proteiner som är mycket välförsedda med lokala osymmetrier i laddningarna.
  • Exempel på vanliga ämnen i blodet som har en osedvanligt stor andel OH-grupper är monosackariderna glukos, fruktos och galaktos. I dessa molekyler med 6 kol finns hela 5 OH-grupper, hela tiden kapabla att haka fast vid proteiner.
  • Av någon anledning jag inte känner är fruktos flera gånger mer benägen att glykera blodproteinet A1c än glukos.

Följden blir att proteiner med dessa påhäng inte fungerar som de ska och i sin tur kan fastna vid andra. Indirekt kan HbA1c uppfattas som ett väldigt ungefärligt mått på medelblodsockret under några veckor, men det säger inte hur svajigt det varit. Om blodsockret varit en blandning mellan många riktigt låga och några få höga så kan HbA1c vara ”falskt bra” trots att ytterligheterna skapat problem.

  • Glykering, oavsiktlig och slumpmässig försockring, drabbar i princip alla vävnader i kroppen, inte bara blodet.
  • Glykosylering är en noga reglerad process där enzymer gör jobbet och sätter monosackariden där den hör hemma.

Det finns några strategier att förbättra HbA1c, via motion/kostbehandling och insulindosering.

    1. Större insulindoser ger lägre blodsocker och HbA1c men hämmar även kroppens normala mekanismer att förse blodet med energibärare som fettsyror/ketoner samt glukos från egna lager som fettväv och leverglykogen. Märk väl att fettsyror, hur långa de än är, bara har en OH-grupp. Två av ketonerna, acetoacetat och beta-hydroxybutyrat, har en vardera medan aceton har ingen.
    2. Fysisk aktivitet sänker på sikt mängden cirkulerande blodsocker och tär även på befintligt muskel- och leverglykogen så där finns plats att ta upp glukos även efter att den fysiska aktiviteten (arbete/motion) upphör. Detta resulterar i lägre HbA1c. Något många förvånas över, även bland diabetesvårdens personal, är att fysisk aktivitet momentant ökar blodsockernivån.
    3. Kostbehandling med reducerad mängd kolhydrater som vid LCHF, gärna kombinerat med fasta, minskar mängden tillfört och därmed även cirkulerande blodsocker och ger lägre HbA1c.

Under senare tid har Diabetisk Ketoacidos, DKA, hamnat i fokus. Det är en följd av insulinbrist hos diabetiker typ 1** och yttrar sig i att blodets pH-buffrande förmåga uttöms och dess pH sjunker under den normala nivån. Om detta inte behandlas kan tillståndet snabbt bli allvarligt, till och med dödligt.

De som kritiserar användning av LCHF för insulinbehandlade diabetiker, främst då typ 1, menar att den låga mängden kolhydrater i kosten kräver så små mängder insulin att det kan leda till insulinbrist och DKA. Insulinets akut viktigaste uppgift är att styra sin ”hormonella motsats”, glukagon. När man äter kolhydrater förbrukas en motsvarande mängd insulin och ”nettomängden” som blir kvar för att styra glukagonet blir långt mindre än doseringen antyder. Å andra sidan, äter man lågkolhydratkost kommer en större andel av insulinet att användas för regleringen av glukagonet.

Även protein kräver insulin och den som till äventyrs är rädd för att insulinmängden blir alltförför låg kan lägga till extra protein. De kan på sätt och vis liknas vid ”långsamma kolhydrater” då det tar rejält med tid från passagen in via munnen till dess de spjälkats färdigt. De aminosyror, proteiners byggstenar, som blir energi strippas på sitt kvävehaltiga innehåll och ger till mer än 3/4 glukos.

Lägg märke till den gråa ytan som omger medelvärdet. Runt 4.5 % finns en rejäl riskminskning, så stor att den sjunker under det grafen kan visa. Samtidigt finns de vars risk är nästan fördubblad vid samma HbA1c.

Min hypotes är att de som når ”bra” HbA1c med intensiv medicinbehandling och åtföljande blodsockersvängningar löper större risker än de med en ”mjuk blodsockerkontroll” med LCHF.

Om du finner felaktigheter eller oklarheter i det jag skriver så är jag tacksam om du meddelar mig i kommentar eller via mail till erik.matfrisk (at) gmail (dot) com


Fördjupad läsning för den vetgirige: Högt blodsocker skadar proteiner Lägg särskilt märke till att glykering drabbar mycket långsamomsatt kollagen, en viktig komponent i stödjevävnad som ben, hud, senor och blodkärlsväggar.

Metabol flexibilitet  Hur kroppen utnyttjar mer energi än blodsocker, t.ex. det fett du gärna vill bli kvitt.

*) Den monosackarid man mäter i blodet är glukos, men den överlägset mest glykeringsbenägna är fruktos, ena halvan av vanligt vitt socker samt den som ger frukter deras sötma.

**) Liknande situationer kan uppkomma vid allvarlig alkoholförgiftning, ketoacidos, och vid allvarlig störning i njurfunktionen, laktacidos. Den senare kan uppkomma i samband med behandling av diabetes typ 2 med Metformin. Se 4 fallrapporter i Läkartidningen.

”Alla vet” att fett innehåller 9 och kolhydrater 4 kcal/gram. Men hur många vet vad det beror på? Båda består enbart av grundämnena kol (C), väte (H) och syre (O) men i olika proportioner och strukturell uppbyggnad.

Glukos

Kolhydrater, monosackarider, som har betydelse för oss ur energisynpunkt har summaformeln C6H12O6. De kan uppträda ensamt eller i  kombinationer som är väsentligt olika varandra. De tre grundläggande enkla sockerarterna glukos, fruktos och galaktos kan bilda så olika kombinationer som t.ex. cellulosa, fibrer och vanligt vitt socker.

Varje kryss och vinkeln representerar kolatomer även om de inte är utskrivna. Underlättar för de som förstår grundläggande ”kemiska”, strular till det för resten. En stor del av ett yrkes kompetens består i en terminologi som håller oinvigda på avstånd.

Hexansyra

De neutrala fetter, triglycerider, som vi både äter och kan lagra är långt mer varierande. De byggs av tre fettsyror, sinsemellan lika eller olika, bundna till en glycerolmolekyl, en slags bärare som håller samman och organiserar dem. Praktiskt taget all energi i en triglycerid finns att hämta från fettsyrorna, glycerolens bidrag är obetydligt och kompenseras mer än väl av att ny glycerol hela tiden måste nybildas när fettsyror ska återkombineras till triglycerider, något som sker flera gånger i en fettsyras ”liv”. För att göra en rättvisande jämförelse väljer jag en okomplicerad fettsyra med 6 kolatomer, den mättade hexansyran (hexan betyder 6). Dess summaformel är C6H12O2, märk likheten med monosackariden ovan!

Den övre av de båda framställningarna i bilden används gärna av kemister, de har kommit överens om att i varje ”vinkel” och änden av strecken finns en kolatom. Varje kolatom i vinklarna har sällskap av ett par väteatomer. Kolatomen i änden till vänster skiljer sig från de andra, den har tre väteatomer som sällskap. Den kallas metyländen och är en slags kemisk ”punkt”, ett avslut. Läser du om metylering i t.ex. DNA är det nästan samma sak, något som sätter in ett avslutande skiljetecken i den långa mening som kallas DNA.

Nu kan du ana vari skillnaden i energiinnehåll består, särskilt om du tänker på att all energimetabolism i slutändan bildar vatten (H2O) och koldioxid (CO2).

Att räkna mängder av ämnen i gram känns vardagligt och naturligt, men inte för kemister. Eftersom de ofta betraktar molekyler och deras inbördes reaktionen mycket närsynt väljer de ett helt annat mått, mol*. Avogadros tal** är en konstant som binder samman antalet atomer/molekyler av ett ämne med dess atom/molekylvikt.

Varje grundämne har en atomvikt som i huvudsak beror på atomkärnans massa, elektronernas bidrag är oftast försumbart. För kol använder vi talet 12, väte har 1 och syre 16. Då atomer i naturen visar små skillnader i sina atomkärnor så är dessa tal inte exakta utan varierar något men är alltid något större än de jag angett. (Irriterande fråga: Varför är de större?)

När vi adderar atomvikterna i en glukosmolekyl blir det (6×12 + 12×1 + 6×16) = 180. Nu är det så finurligt bestämt att 180 gram glukos innehåller 6,02 x 1023 ** molekyler och därför är 1 mol. Vid samma uträkning på hexansyra, den mättade fettsyra som har 6 kol, blir molvikten 116 gram.

I Review of Medical Physiology av William F. Ganong, 20de upplagan, finns ytterligare uppgifter vi behöver.

  • 1 mol hexansyra (116 gram) ger 44 mol ATP*
  • 1 mol glukos (180 gram) ger 38 mol ATP

100 gram glukos ger alltså ungefär 21,1 mol ATP medan samma massa av hexansyra presterar inte mindre än 37,9 mol ATP.

När vi utvinner energi ur glukos resp. hexansyra sker det genom lång rad reaktioner som resulterar i ATP, vatten och koldioxid. Både glukos och hexansyra har samma antal kol och väte men olika antal syre, glukosen har tre gånger så många. Det betyder att den redan är avsevärt mer oxiderad redan från start.

  • Som regel kan man betrakta andelen ”rena” kol-väte-bindningar som mått på det utvinningsbara energiinnehållet i en molekyl.
  • Alla fettsyror innehåller alltid exakt 2 syre, vilket innebär att energibidraget från en lång fettsyra är större än från en kortare.

Till detta kommer att enskilda glukosmolekyler aldrig kan uppträda koncentrerat i kroppen utan att skada oss. I hela blodmängden på 5-6 liter bör det inte varaktigt finnas nämnvärt mer än 5 gram glukos, 1 gram per liter = 1 promille. En fiktiv person på 70 kg skulle, givet att glukosen kan slås ut över hela kroppsmassan, kunna lagra 70 gram glukos.

Turligt nog är verkligheten annorlunda, glukos kombineras till långa grenade kedjor, glykogen, som lagras i muskler och levern, sammanlagt cirka 500 gram/2000 kcal. Koncentrationen kan ökas avsevärt utan att skada våra celler då det är ändarna på glykogenkedjorna som kan ställa till problem, och de är långt färre än antalet glukosmolekyler. Trots allt kräver detta glykogen en del vatten för att späda ut det till ofarliga koncentrationer. Ett komplett glykogenförråd väger då ungefär 2 kilo.


*) Mol är inte bundet till enbart atomer och molekyler utan kan användas för att räkna t.ex. antalet fotoner, ATP och annat som finns i oerhört stora antal.

**) Avogadros tal = 6,02 x 1023 = 602 000 000 000 000 000 000 000

***) ATP, adenosintrifosfat, är en grundläggande energibärare som produceras i cellernas mitokondrier ursprungligen från den mat vi äter eller återvinner från diverse lager i kroppen. ATP är en gemensam energivaluta som våra celler använder.

Att diskutera kroppens funktioner, matens egenskaper och toxiska ämnen utan grundläggande kunskaper om kemi är onödigt svårt och ger närmast oändligt utrymme för missförstånd. Jag vill försöka lära mig något om grundläggande kemi som är viktig för mat och metabolism, ämnesomsättning. Ett sätt är att försöka förklara för mig själv så att jag tror att jag förstår. För att öka insatsen avsevärt väljer jag att utmana genom skriva mina tankar här.

Det man inte på ett sammanhängande sätt kan beskriva har man inte greppat!

  • Atomer är mycket små unika element som allt i och omkring oss består av. Vi kan inte se enskilda atomer, men via kluriga experiment och mätningar går det att med god precision ta reda på deras egenskaper. Jag kommer att lägga tyngdpunkten på atomers inbördes samspel (kemi) och lämnar merparten av atomkärnornas kvantfysik och liknande fix till andra att beskriva.

electron_clouid

En vanlig atommodell* bygger på en kärna av minst en proton (en positivt laddad nukleon**) dessutom, i alla ämnen utom den allra enklaste väteatomen (1H), en eller flera elektriskt neutrala neutroner. Atomer i grundtillstånd har samma antal negativt laddade elektroner som det finns protoner i kärnan. Ofta uppfattar man elektronerna som att de cirklar runt kärnan likt planeter runt en stjärna men de beter sig snarare som lager av diffusa ”moln”, man kan räkna dem, vet i vilket molnlager de hör hemma men inte var de för ögonblicket finns. Tätheten i molnen (de kan finnas i flera lager) beskriver sannolikheten var de kan påträffas. För att ytterligare komplicera det uppträder elektroner nästan uteslutande parvis i orbitaler och har då alltid olika spin. Bildens proportioner är felaktiga, om protonen får bestämma skalan borde elektronen vara 50 – 100 meter bort.

Ger man en elektron en lagom knuff (t.ex. lyser på den) kan den hoppa ut från sitt ordinarie moln och kallas då exciterad, det varar mycket kort tid och när den faller tillbaka ger den ifrån sig energi i form av en foton, några synliga medan andra kan vara UV eller IR (värmestrålning). Varje grundämne avger ett noga definierat mönster av sådana spektrallinjer och man kan därför med god precision bestämma sammansättningen av kroppar både nära och långt borta som t.ex. stjärnor, dessutom hur hastigt stjärnor/galaxer rör sig i förhållande till oss.

Om kärnan vore stor som en ärta så finns elektronmolnen i storleksordningen 500 meter bort. Elektronens massa är oerhört liten,  1/1800 av en nukleon (proton eller neutron). Allt i och omkring oss är därför i huvudsak tomrum och det vi kan förnimma är det yttersta eller de två yttersta elektronmolnen. När vi rör någon/något är det ”våra” elektroner mot ”deras”. När blickar möts är det fotoner som överför ögonens färg och glans från och till elektronmoln.

Det verkar lite si och så med pyttigt små elektroner långt ut i diffusa moln, men ta en slägga och damma den med kraft i ett städ så ser du förmodligen inga nämnvärda märken i vare sig slägga eller städ. Städets och släggans elektronmoln bryr sig inte tillräckligt länge för att det ska synas. Samma sak gäller även för atomer i gaser och grundämnen som är lätta att bearbeta, det är inte atomer i sig som ger vika, de flyttar sig inbördes. Men om du slår tillräckligt många gånger och sedan känner på släggans slagyta så är den varmare än förut. Vi har gett dess atomer/molekyler lite extra rörelseenergi, det vi uppfattar som och kallar värme.

Varje grundämne har ett unikt antal protoner i kärnan och (i det oladdade grundtillståndet) precis samma antal elektroner fördelade i ett eller flera moln utanför. Omvänt kommer varje antal protoner att motsvara ett unikt grundämne. Hos alla grundämnen utom den enklaste varianten av väte (det finns två till, deuterium*** och tritium) finns även neutroner, ofta samma eller större antal än protonerna. Antalet neutroner kan variera och de resulterande ämnena kallas isotoper. Ur vår kemiska synvinkel är de näst intill likvärdiga.

Mellan kärnpartiklarna finns ett par krafter som verkar på olika avstånd, både attraherande och repellerande. Trots en stark kärnkraft**** mellan nukleoner så spelar den betydligt svagare repellerande kraften mellan positivt laddade protoner en avgörande roll, dess verkan når nämligen så mycket längre. För att tillföra mer sammanhållande attraktion i kärnan i form av mer stark kärnkraft ökar antalet oladdade neutroner i kärnan i minst samma takt som antalet protoner, men ett ”misslagomt” antal neutroner gör kärnorna instabila, de faller isär i diverse partiklar och strålning, de är radioaktiva.

Om det blir fel eller överförenklat bortom räddning så hoppas jag att eventuella läsare påpekar och rättar så snart som möjligt i kommentarer eller via mail, adressen finns uppe till vänster.


*) I naturvetenskapliga sammanhang använder man begreppet modell, ofta en visualisering av sådant som annars är svårt att föreställa sig. En bra modell ska motsvara verkligheten så långt vi känner den, men mycket är fortfarande oupptäckt.

**) Nukleoner är samlingsbeteckning på kärnpartiklarna protoner och neutroner.

***) Deuterium med två nukleoner plus syre ger tungt vatten. Ungefär 1 väteatom av 7000 i våra kroppar är 2H, Deuterium. Iskuber av deuterium sjunker i vanligt vatten. Tritium (3H) är instabilt, radioaktivt, och faller isär med en halveringstid på dryga 12 år. Har du en klocka med ständigt ”självlysande” siffror och visare så är sannolikheten stor att det är tritium som exciterar elektroner i fosfor att avge ljuset. Tidigare användes radium.

****) Den starka kärnkraften verkar mellan atomkärnans nukleoner men bara på mycket korta avstånd i storleksordningen en femtometer (10-15 meter = 1/1 000 000 000 000 millimeter). På närmare avstånd än så blir den snabbt repulsiv (frånstötande) och på längre avstånd upphör den snabbt. Det blir lite som om nukleonerna är sammanbundna med något som samtidigt är starkt, föga elastiskt och skört. För nukleoner som befinner utom den starka kärnkraftens räckvidd kommer Coulombkraften (repulsion mellan laddningar med samma tecken) omgående att ta överhanden. Det är därför radioaktivt sönderfall resulterar i ”snabb energi”. (Egentligen exergi.)

Ibland är konventionella beskrivningar så djupt rotade att det är svårt att ens ana alternativa synsätt. En majoritet av kost- och fysiologilitteratur beskriver vårt näringsbehov med kolhydrater i början och vatten sist, närmast som en kuriositet. Utan att gå in på vattnets roll, som gör att det ovillkorligen hamnar först i min beskrivning, så vill jag föreslå ett annat synsätt som rimligen bör ha varit giltigt under större delen av människans evolution*:

  • Fett och glukos är människans huvudsakliga energiråvaror. 
  • I rimlig utsträckning  kan kroppen anpassa sig till och använda  kolhydrater/glukos som energiråvara utan akuta hälsoproblem.
  • Glukosrik mat kommer att, indirekt via insulin, hämma några av homeostasens hormoner som glukagon, adrenalin inklusive övriga katekolaminerkortisol och tillväxthormon.
  • Under insulinets verkan lagras glukos, så långt utrymmet räcker, som glykogen. Vi kan inte lagra mer än ett dygns energibehov i form av glykogen, överskott omvandlas till fettsyror och lagras som väsentligt kompaktare fett.
  • Redan efter ett kortare ätuppehåll, t.ex. en natts sömn, börjar vi gradvis utnyttja fett från egna vävnader.

Runs on fatEtt kilo fettväv anses motsvara 7500 kcal medan 2000 kcal glykogen (ungefär normalt lager av glukos) väger 1,85 – 2,5 kg**. Låt säga att en person i vila behöver 2000 kcal/dygn, det kräver då 1,85 – 2,5 kg glykogen (hela lagret) alternativt 0,267 kg fettväv.***

Observera att jag medvetet inte nämner proteiner då de i sig inte ger energi. När kroppen tagit sitt behov av dess byggstenar, aminosyrorna, kommer överskottet att rensas på sitt kvävehaltiga innehåll, återstoden blir till större delen glukos, en mindre del ketoner.


*) Människan har evolverat under 2 miljoner år eller mer. Mindre än 100 000 år sedan, kanske bara halva den tiden, uppträdde den moderna människan. Det finns fossila och arkeologiska spår som visar att de var samlare och jägare, dock inga som visar förekomst av kylskåp, matvarubutiker eller snabbmatshak. Sannolikt var därför matordningen väsentligt annorlunda än det överflöd vi är vana vid.

**) Det finns många uppgifter om hur mycket vatten varje gram glykogen binder, mellan 2,7 och 3-4 gram.

***) Detta under den osäkra förutsättningen att energiråvaror är likvärdiga, som traditionalister uttrycker det; ”alla kalorier är lika”.

Fruktlöst kaloriräknande

Publicerat: 2016-05-10 i Energi, Exergi
Etiketter:, ,

Traditionella InoUtare (kaloriräknare) summerar kalorierna i den mat vi äter, drar bort summan av den basala energi vi behöver för att överleva, den energi vi behöver för vår dagliga verksamhet samt eventuell extra fysisk aktivitet (”motion”). Om slutresultatet är noll anses vi vara i energibalans, är det större än noll lagrar vi överskottet i kroppens vävnader, vi antas gå upp i vikt. Om resultatet hamnar under noll, ett energiunderskott, görs uttag ur kroppens vävnadsbank och vi antas gå ner i vikt.

Verkningsgrad

Den energi (egentligen exergi) vi äter/dricker är alltid flerfalt större än det arbete vi uträttar, vår fysiska verkningsgrad är låg. Som nyttigt arbete räknar jag att överleva, vara fysiskt aktiv, gärna i överskott som kallas motion, tänka och producera värdefullt intellektuellt material. Förhoppningsvis ungefär det du gör nu. Repetera gärna här: Hur mycket är 2000 kcal?

I fineli.fi anges ett äpple med skal ha 32 kcal/100 gram = 135 kJ. Hur mycket är det egentligen i något annat mått? Ett tankeexperiment; lyft ett äpple om 100 gram så högt att dess lägesenergi blir 32 kcal/135 kJoule/135 000 Joule. Om du repeterade i länken i föregående stycke klurar du ut att man måste lyfta äpplet aktningsvärda 135 000 meter för att lägesenergin ska motsvara det ”kemiska” energiinnehållet.

Låt oss nu anta att där finns ett rör med totalt vacuum från 135 000 meters höjd och ner till marken. Vitsen är att luften annars kommer att göra stort motstånd och vi inte inser hur mycket 135 000 Joule lägesenergi motsvarar. Vi krånglar in äpplet i röret och släpper det. Hur stor hastighet har det när det smackar i marken? Sambandet finns i fotnoten*. Sätt in siffrorna så finner du att sluthastigheten blir 1 627 m/sek, knappt 4,8 gånger ljudhastigheten. Den som vill kan ju sätta in äpplet i en avancerad kanon och avfyra det med utgångshastigheten Mach 4,8 om det känns bättre. Energin är densamma. Så mycket kemiskt bunden energi finns i 100 gram äpple. Sätt det i relation till hjärnans krav, vårt sammanlagda överlevnadsbehov, viss fysisk aktivitet samt motion.

I verkligheten måste vi ta hänsyn till att inga energiomvandlingar är förlustfria, var gång du t.ex. byter kemisk energi mot lägesenergi, vidare till rörelseenergi och anslagsenergi sker det avsevärda förluster. Observera att ingen energi går till spillo, ”åslappe”** blir bara av ”sämre kvalitet” och ändar förr eller senare i värme, så utspädd att vi inte kan göra oss nytta av den. Den mest utspädda energin vi har nytta av är den som bidrar till att hålla vår kropp vid 310 K = 37 C.

En stor mängd energi går förlorad genom utandning, avföring och urin. Varje liter vatten vi andas och svettas ut utan att märka det*** tar med sig minst 539 kcal/2255 kJoule = 2 255 000 Joule. Pärlande svett är kroppens nödkylsystem där varje liter på sin höjd tar med sig 37 kcal/154 kJoule = 154 000 Joule och detta endast under förutsättning att vi dricker isvatten.

  • Låt oss lyfta 1 liter vatten så att den får lägesenergin 2 255 000 Joule, det innebär cirka 229,8 kilometer, drygt halvvägs upp till den Internationella rymdstationen ISS.
  • Ett extra glas vatten om 2,5 dl som avdunstar på kroppen tar med sig minst 539/4 kcal = 135 kcal. Det motsvarar energin i drygt 4 hekto äpplen.

Mitt mål är att visa vilka gigantiska mängder energi vi faktiskt äter och hur liten andel nyttigt som kommer ut av det, omvandlingsförlusterna dominerar stort. Simpelt kaloriräknande som inte fullt ut tar hänsyn till omvandlingsförluster är vilseledande.


*) I fysik används formeln g = v2/2s där g = tyngdaccelerationen (9,81 m/s2), v sluthastigheten av en fritt fallande kropp och s är fallsträckan. Genom att flytta om i formeln finner man att v = (2gs)-1/2 (sluthastigheten = kvadratroten ur 2gs).

**) Åslapp är ett dialektord från mina hemtrakter som beskriver det som blir över.

***) Vi avger avsevärda mängder vatten från huden. Så länge den inte bildar vätska lägger vi knappt märke till det. I blåst ökar avdunstningen avsevärt, vi noterar en påtaglig avkylning.