Kemi 02: Vatten, en po(pu)lär molekyl

Publicerat: 2015-05-19 i Kemi, vatten
Etiketter:,

Vatten känns som ett odramatiskt ämne utan nämnvärd karaktär men tittar man lite närmare är det alldeles tvärtom. Våra kroppar är till mer än 2/3 vatten, H2O. Varje vattenmolekyl består av en syre– och två väteatomer.

  • Syre i gasform (O2) kan förenklat beskrivas som två kovalent* bundna syreatomer. Dessa har vardera 8 positivt laddade protoner och 8 elektriskt neutrala neutroner i atomkärnan. För att atomen skall bli elektriskt neutral omges den av 8 (negativa) elektroner i två ”moln”, ett inre med 2 och en yttre med resterande 6 elektroner.
  • Väte i gasform (H2) är två kovalent bundna väteatomer med vardera 1 proton och 1 elektron som normalt finns i sin lägsta ”bana”, den med lägst energi.

Vattenmolekylen får speciella egenskaper genom att väteatomerna binds hårt till syret (kovalent!) men lite osymmetriskt, de sitter som öronen på Musse Piggs huvud. vattenmolekyl bollbild

Detta beror på att vardera väteatomen delar ett par elektroner med syret, sammanlagt 4, medan syret fortfarande har 4 för egen del i yttre elektronmolnet (de inre 2 berörs inte). Eftersom alla elektroner repellerar varandra men ändå skall ”få plats” blir lösningen (med lägst energi) att vätemolekylerna hamnar lite på sned.

vattenmolekyl

Då syret har en massivare atomkärna med större positiv laddning kommer de delade elektronerna att tillbringa något mer tid nära syret, den sidan kantrar mot att vara negativ i kontrast till väteatomerna som förefaller mer positiva. Även om molekylen som helhet är elektriskt neutral kommer den vid mycket närgånget betraktande att ha en något mer negativt laddad sida och två lätt positiva ”väteöron”. Den har därför olika elektriska poler och vattenmolekylen kallas därför polär vilket ger vatten många unika egenskaper.

När två vattenmolekyler finns tillräckligt tätt intill varandra kommer den enas väteatom att attraheras av den andres syreatom. Detta är enbart en svag elektrostatisk attraktion, de delar aldrig elektroner och deras inbördes avstånd är dubbelt så stort som den kovalent bindningen mellan syre och väte i vattenmolekylen. Kraften är liten (ungefär 1/20) jämfört med en kovalent bindning och vid rumstemperatur varar den mindre än 20 picosekunder**. Om en bindning löses upp bildas en ny inom 0,1 picosekund. Detta gör att vatten är en vätska som mycket snabbt anpassar sig till omgivningen och är ytterst rörligt.

Vätebindningar i vatten

Har vi många vattenmolekyler tillsammans i rumstemperatur kommer deras inbördes rörelser oupphörligt att skapa och upplösa de enskilda elektrostatiska bindningarna (vätebindningar). En vattenmolekyl kan delta i allt mellan 0 till maximalt 4 vätebindningar men i det kaos som råder i rinnande vatten gäller i genomsnitt 3,4 bindningar.

När vattnets temperatur sjunker minskar de enskilda vattenmolekylernas rörelser och de tar lite mindre plats. Vattnets densitet är som störst vid cirka 4 grader och gör att tillräckligt djupa sjöars bottentemperatur är nära konstant året om.

Temperatur i sjö

Sjunker vattentemperaturen under 4 grader börjar enskilda vattenmolekylerna att anpassa sig till en struktur som tar mer plats, har lägre densitet. När vi begränsar vattenmolekylernas egenrörelser kraftigt genom att sänka rörelseenergin börjar de ordna sig så att var och en binder till 4 andra, de kristalliserar till is. Kristallformen av vatten tar mer plats än i vätskeform därför flyter is.

Density of ice and water

När vi når vattnets frystemperatur men innan alla vattenmolekyler ”lugnat ner sig” och binder till fyra andra måste vi avlägsna avsevärda mängder energi/värme.*** Detta märks tydligt när vi använder is för att kyla en dryck. Upptiningen tar rätt lång tid, men när isen är borta stiger temperaturen i resten mycket snabbt. Om det finns något kvar i glaset, vill säga.

Elektrostatiska vätebindningar är veka i jämförelse med kovalenta bindningar inom vattenmolekylen, men is är trots det starkt! Även om en enskild vätebindning är rätt svag så kommer blotta mängden och det faktum att de är välordnade och långtidsstabila i kristallmönster att ge den nödvändiga styrkan. Jag tror att det räcker med 60 cm kärnis för att köra en stridsvagn, men kolla först innan du provar.

Vatten har ytspänning, du kan försiktigt lägga en nål eller ett rakblad på vatten i ett glas och det flyter. Vi har alla sett hur de små skräddarna oförfärat springer på vattnet. Hur kan det gå till? Svaret finns hos vätebindningarna.

Skräddare

Just i vattenytan finns lika många potentiella vätebindningar som i resten av vattnet men inga vänds uppåt/utåt, där finns inget att binda till. Därför kommer fler att binda till vattenmolekylen intill vilket skapar en något högre kraft i sidled än inåt vattenmassan/droppen. Detta kallas ytspänning.

Vattnets temperatur är ett mått på vattenmolekylernas genomsnittliga vibration. I molekylskalan kan det skilja avsevärt mellan enskilda vattenmolekyler, allt mellan närmast orörlig och upp till mer än tillräckligt för att lösgöra sig från grannarnas vätebindningar. Att det är så märker vi om vi ställer fram ett öppet kärl med vatten. Efter några dagar har vattennivån minskat fullt märkbart även vid rumstemperatur. När vi var borta 5 veckor i sträck var till och med iskuberna i frysens -20 grader betydligt mindre än formen! Enskilda vattenmolekylers energi i kristallisk is kan alltså, slumpmässigt, bli så hög att de kan skaka sig loss och direkt övergå till vattenånga även i -20 grader, förmodligen lägre. Detta visar att effekter i atom- och molekylskala inte nödvändigtvis är desamma som vi upplever med våra sinnen. Och långt mer avvikande blir det i subatomära (kvant-) sammanhang.

Vattnets frystemperatur är tämligen konstant men koktemperaturen varierar kraftigt beroende på lufttrycket. Atomer och molekyler i luften motverkar vattenmolekylernas flyktförsök och riktar om dem så att många hamnar i vattnet igen. Först när man når den temperatur/rörelseenergi som gör att merparten vattenmolekyler klarar att lämna vattenytan för gott säger man att det kokar. Då vatten är polärt och domineras av vätebindningar hamnar kokpunkten högt och det går åt rejält med energi för att koka ”isär” en liter vatten.****

  • Att vatten är polärt ger det förmågan att lösa polära ämnen och interagera med andra molekyler i kroppen.
  • Att vatten är polärt gör det till ett fantastiskt effektivt kylmedel.

Vatten är tveklöst avgörande för liv som vi känner det och min plan är att framöver visa ytterligare några egenskaper som används i metabolismen.


*) Mer om kovalenta bindningar i Kemi 01: Kovalenta bindningar

**) En picosekund är 10-12 sekunder eller 0,000 000 000 001 sekund

***) Man måste avlägsna 80 kalorier (eller 334 Joule) för att omvandla 1 gram nollgradigt vatten till nollgradig is.

****) Man måste tillföra 540 kalorier (eller 2260 Joule) för att förånga 1 gram vatten.

Annonser
kommentarer
  1. Josef Boberg skriver:

    ”Vatten är tveklöst avgörande för liv som vi känner det…”

    Sant.

    Gilla

  2. […] Mer om vattnets kemi. […]

    Gilla

  3. […] Salt i maten | MatFr… on Kemi 02: Vatten, en po(pu)lär… […]

    Gilla

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s