Arkiv för kategori ‘Mitokondrier’

Ny forskning från Lunds universitet visar att inflammerade, instabila åderförkalkningsplack har en ämnesomsättning som särskiljer dem från stabila plack. Resultaten visar också på likheter mellan ämnesomsättningen i instabila plack och cancerceller.

Källa: diabetesportalen.se

Originalstudien i fulltext

Vilken gemensam faktor har instabila plack och cancerceller?

– Den omprogrammerade ämnesomsättning vi har hittat i farliga plack återfinns även i cancerceller. På samma sätt som ämnesomsättningen i cancerceller är omprogrammerad* för att bland annat snabbt kunna spjälka socker, tycks de farliga plackens sockerupptag vara större än hos stabila plack, förklarar Harry Björkbacka, docent i experimentell kardiovaskulär forskning vid Lunds universitet.

Hur tänker man utnyttja denna nya insikt?

Skillnaden i ämnesomsättning mellan instabila och stabila plack tyder på att hjärt-kärlsjukdom på samma sätt som cancerceller kan begränsas genom behandling med läkemedel som angriper ämnesomsättningen.

”…läkemedel som angriper ämnesomsättningen.”? Visst, det går säkert att använda Metformin som används av diabetiker typ 2, de som tidigare kallades sockersjuka. Metformin hämmar upptaget av glukos ur blodet och sänker på så sätt blodsockret. Dess andra effekt är att sänka leverns förmåga att släppa ut glukos från leverglykogenet.

LCHF-are angriper blodsockerproblemet ur en annan vinkel, vi äter helt enkelt mindre kolhydrater.

Forskningsstudien innehåller även en intressant ansats till förbättrad diagnostik av plack.
– Upptäckten att farliga plack till skillnad från stabila plack har en omprogrammerad metabolism öppnar för nya möjligheter att identifiera de farliga placken. Det sker genom att visualisera upptag av näringsämnen specifika för den omprogrammerade metabolismen med hjälp av en PET-kamera, säger Harry Björkbacka.

PET-scanning används även vid cancerdiagnostik där man med hjälp av en speciellt radioaktiv glukosvariant söker efter vävnader som har en väsentligt högre glukosförbrukning.

Mitt förslag är att, i väntan på att denna forskning ska slå an, börja med LC– kost, gärna LCHF fullt ut. Kombinera detta gärna med olika fastevarianter som 5:2, 16:8. Oavsett om du är diabetiker eller ej så rekommenderar jag dessutom att du går med i facebookgrupperna Smarta Diabetiker och Smarta Diabetikers Recept där du kan lära dig mycket mer.


*) ”Omprogrammerad” för att snabbt spjälka socker låter tjusigt, eller hur? Vad det är frågan om är att celler som bygger dessa vävnader har förlorat hela eller delar av de mitokondrier som är ansvariga för att omvandla olika energibärare till ATP, kroppens dominerande energivaluta. Detta innebär att endast en bråkdel (cirka 2/38 via fermentering) av glukosens energi kan utnyttjas, inget från fett.

Annonser

Vårt pH* är en av de allra mest välreglerade parametrarna i kroppen, om kroppen som helhet lämnar sitt friska intervall** mår vi inte bra och kan till slut vara livshotande. Regleringen sker sist och slutligen via urin och andningsluften. En av de mest surgörande aktiviteter vi kan ägna oss åt är intensiv fysisk ansträngning vilken gör att du måste stanna upp och ”hämta andan”, du djupandas och flämtar. Du andas ut surgörande koldioxid och återställer blodet så det blir mer alkaliskt/basiskt. Märk väl att blodet hos en frisk människa alltid är alkaliskt med ett pH tydligt över 7, (cirka 7,35 – 7,45) om värdet sjunker nära eller till och med under 7 så ligger du pyrt till.

Cancercellers mitokondrier*** är skadade och klarar inte att förse cellen med fullvärdig energi från vare sig glukos eller fettsyror. Cellen får därför nöja sig det lilla som kommer av det första pyttelilla nedbrytningssteget som förbereder glukosen för att bli användbart i mitokondrierna. Det ger ett mycket lågt utbyte av glukos jämfört med när mitokondrierna fungerar fullt ut, ungefär 2/38.

När det bildas överskott av pyruvat som inte kommer till nytta i mitokondrier slås de samman till mjölksyra som ska transporteras bort via blodet. Blodförsörjningen i cancertumörer är lite hipp som happ och lämnar alltid kvar ett försurande överskott i tumören. De skapar en sur miljö omkring sig genom ”usla matvanor”, inte för att de ”trivs” i den.

Det är fullständigt meningslöst att försöka äta ”basbildande” mat då kroppen självt med lätthet övertrumfar alla ansträngningar. En rimlig strategi för att minska försurning som beror av cancertumörens bristfälliga energianvändning är att undvika glukos och fruktos.

Ett rimligt sätt att allvarligt missgynna cancertumörer bör vara en strikt ketogen kost****, gärna med rejäla inslag av kokosolja. Helt nyligen har jag, för egen del, börjat testa den extremt kortkedjiga mättade fettsyran ETANSYRA. Jag har inte cancer utan gör det av andra skäl. Om kokosolja ger snabb energi genom att dess fettsyror är korta och med lätthet följer blodet så kan etansyran möjligen vara ännu effektivare.

Var finner man då etansyra? Med största säkerhet har du det hemma i köket, det finns i alla former av vinäger och i ren form i ättika, det är helt enkelt ÄTTIKSYRA! Använd rikligt där det passar i matlagningen eller, som jag testar, ta 1-3 matskedar äppelcidervinäger i vatten en eller flera gånger per dag.

Jag förstår om du tycker att ättika verkar skumt att konsumera i större portioner än ”kryddmängder”, men se det som den fettsyra det är, om än kortare än andra.

Annika Dahlqvist kommenterade: ”En liten varning bara. För ett antal år sedan var det populärt att ta en mängd av äppelcidervinäger dagligen som hjälp till viktnedgång (eller nåt). Tandläkarna blev förskräckta då de noterade en drastiskt ökad frekvens av frätskador på tänderna. Syra fräter på tänderna.”

MatFrisk har flera artiklar som tar upp olika aspekter på cancer, här en länk till ett gäng av dem.


*) pH är ett mått som anger proportionerna mellan surgörande H3O+– och alkaliska OH-joner. pH = 7 är neutralt, (lika många av varje) <7 är surt och >7 är basiskt, alkaliskt. Observera att pH anger förhållanden mellan de olika jonerna, inte mängden.

**) Acidos eller syraförgiftning är inom medicin beteckningen på tillståndet då det arteriella blodets pH-värde sjunker under 7,35. Då pH istället överstiger 7,45 benämns tillståndet alkalos. (Wikipedia)

***) Mitokondrier raffinerar matens innehåll av energi i form av glukos och fettsyror till det cellen kan använda, ATP, adenosintrifosfat.

****) En ketogen kost innehåller ett minimum av kolhydrater, en anpassad men låg mängd protein (helst från animaliska källor) och majoriteten i form av animaliskt fett.

Autofagi är, som jag tolkar det, kroppens sophämtningssystem som jobbar med återvinning av aminosyror, förmodligen även mycket annat. Det krävs 2-3 hg av dessa aminosyror för att ersätta celler, enzymer och hormoner varje dygn och det går inte att äta sig till dessa mängder.

Källa: Artikel, Cancerfonden

Då alla celler, friska såväl som de med skadade mitokondrier (cancer), kräver aminosyror är det självklart att autofagin ”levererar” byggmateriel. På så sätt kan autofagin betraktas som skyldig till att hjälpa cancern. Dessutom bidrar den med den/de aminosyra som kan metaboliseras till dess energi.

Men, så vitt jag vet finns ingen process som aktivt ”stjäl” byggmaterial och energi från andra delar av kroppen, cancerceller får stå i kö som alla andra. Då de har enorma effektivitetsproblem i sin glukosanvändning kommer en ketogen kost att slå hårt mot dem och deras processer även om deras aminosyrametabolism kan hålla dem hjälpligt vid liv.

Via länken i artikeln diskuterar man pH i tumörer, men nämner inte att det är ”avfallet” från den usla glukosmetabolismen som ger denna effekt. Minns att det är mjölksyran som är biprodukten i den inledande anpassningen av glukos där pyruvat för en frisk mitokondries behov skapas. I cancerceller bildas mjölksyra i stora mängder, dels är blodflödet underdimensionerat i tumörer i förhållande till behovet och båda faktorerna gör att avfallshanteringen inte klarar sin uppgift, det blir ”surt” i tumören.

Så något om insulinets möjliga roll. Det finns långt fler insulinoberoende glukostransportörer (GLUT) i kroppen utöver de som styrs av insulin, GLUT4. Alla celler får därför ett grundbehov av glukos för sin överlevnad även om det för vissa celler inte täcker hela energibehovet. GLUT4 har en betydligt större transportkapacitet än de övriga, när den är aktiv är det som en lucka i botten av en vattentunna där de övriga är mer som olika stora hål i dess sidor. Typ.

Hur väl cancerceller är bestyckade med GLUT, särskilt 4-an vet jag inte, men med tanke på deras enormt stora glukosmetabolism är det troligt att mycket av den går via den insulinstyrda ”bottenluckan”. Också av det skälet är det logiskt att hålla insulinnivån låg genom uttalad LC, en ketogen kost! Att den dessutom inte bör innehålla mer än basbehovet av proteiner med en för människans behov väl anpassad aminosyraprofil säger sig självt då ungefär 4/5 av den energi som kommer av ett proteinöverskott kommer i form av glukos.

Vatten i glas

En uttalad form av ketogen metabolism sker vid några dagars vattenfasta då kroppen övergår till att utnyttja naturligt animaliskt fett från egna fettlager samt återvinner aminosyror från proteiner som har den aminosyraprofil vi människor behöver, de egna vävnaderna.

 

Så tänker jag, men det är ju bara en lekmans funderingar.

En frisk person kan, åtminstone efter viss anpassning, utnyttja mycket varierande mat för att utvinna näringsämnen inklusive den energi vi behöver. Detta innebär att den metabola flexibiliteten är hög, homeostasen har friast möjliga spelrum.

I dagens medicininfluerade värld söker både läkare och patienter ”pillerlösningar”, enkla genvägar för att inte behöva göra förändringar av ingrodda vanor. Ett uppenbart problem med detta är att nästan alla mediciner har långt fler ”biverkningar” än den eftersträvade. Lycka till med att försöka påverka något i kroppens komplicerade system utan att lägga krokbent för något annat.

reconmap

Källa: ReconMap

Epilepsi, Alzheimers och Parkinsons är neurologiska sjukdomar som allvarligt försämrar livskvalitet och livslängd. De kan påverkas med mediciner, men har uppenbarligen ursprung i bristande metabol flexibilitet, då kosthållningen kan ha stor inverkan såväl negativ som positiv.

neuroprotective-and-disease-modifying-effects-of-the-ketogenic-diet

Källa: ncbi

Artikeln är mycket detaljerad och diskuterar många positiva effekter och verkansmekanismer av en ketogen kosthållning. Jag fascineras av förklaringar och experiment som tar avstamp i annorlunda betraktningssätt, det ger perspektiv och kan bekräfta eller vederlägga konventionella synsätt. Ett exempel är följande:

Carbohydrate restriction as a protective mechanism: A key aspect of the ketogenic diet is carbohydrate restriction.

Min tolkning: En nyckelfunktion hos ketogen kost är kolhydratrestriktion.

Ett logiskt sätt att testa detta är naturligtvis att minska kolhydrater i maten, men här gör man helt annorlunda. Räknat i förhållande till vikten försörjs den helt dominerande mängden celler med energi som processats av dess mitokondrier till användbara ”energipaket” i form av t.ex. ATP. De inkommande råvarorna kan vara fettsyror och glukos från maten, men även andra som oftast har sitt ursprung i andra delar av metabolismen (ämnesomsättningen).

The role of decreased carbohydrates in neuroprotection has been investigated through the use of 2-deoxy-D-glucose (2-DG), a glucose analog that is not metabolized by glycolysis.

Min tolkning: Den skyddande effekten av kolhydratrestriktion har studerats genom att använda 2-deoxy-D-glucose (2-DG), en ”nästanglukos” som inte kan brytas ner.

SIGMA-ALDRICH (Merck) är en stor leverantör till forskning och marknadsför 2-deoxy-D-glucose med följande argument:

  • 2-Deoxy-D-glucose (2-DG) is used in glucoprivic feeding research to invoke and study the processes of counter-regulatory response (CRR). 2-Deoxy-D-glucose is used in the development of anti-cancer strategies that involve radio- and chemosensitization and oxidative stress.
  • 2-Deoxy-D-Glucose (2-Deoxyglucose) is a glucose analog that inhibits glycolysis via its actions on hexokinase, the rate limiting step of glycolysis. It is phosphorylated by hexokinase to 2-DG-P which can not be further metabolized by phosphoglucose isomerase. This leads to the accumulation of 2-DG-P in the cell and the depletion in cellular ATP. In vitro, 2-Deoxyglucose has been shown to induce autophagy, increase ROS production, and activate AMPK.

I korthet:

  • Celler luras att ta upp ”fakeglukos” som är oanvändbart.
  • Inströmningen av glukos via GLUT är passiv (går från blodet bara om koncentrationen i cellen är lägre) och minskar/upphör när cellen är ”fylld”
  • Detta innebär en total kolhydratrestriktion för cellerna och att energiförsörjningen sker från andra källor, t.ex. ketoner.

Läs om Warburgeffekten (cancerceller är glukosberoende) på SIGMA-ALDRICH

Otto Heinrich Warburg demonstrated in 1924 that cancer cells show an increased dependence on glycolysis to meet their energy needs, regardless of whether they were well-oxygenated or not, a condition called aerobic glycolysis. Converting glucose to lactate, rather than metabolizing it through oxidative phosphorylation in the mitochondria, is far less efficient as less ATP is generated per unit of glucose metabolized. Therefore a high rate of glucose metabolism is required to meet increased energy needs to support rapid tumor progression.

”Försurad kropp?”

Publicerat: 2016-03-30 i ATP, Kemi, Mitokondrier
Etiketter:, , ,

Ett av de mest välreglerade systemen i kroppen är blodets pH-värde. Det ligger hos friska i ett snävt område med cirka 0.1 pH-enheters variation. pH är ”negativa tio-logaritmen av hydroniumjonkoncentrationen i en lösning”, neutralt när pH = 7, surt därunder och basisk/alkaliskt däröver. I vardagliga sammanhang räcker skalan från 0 – 14 för att beteckna de flesta förekommande värden.

Blodets pH ligger i trakten av 7.3 – 7.4, vilket innebär att koncentrationen av de surgörande vätejonerna är cirka hälften jämfört med en neutral lösning.

Det mest extrema pH hos människan finns i de organ, parietalceller (1), som producerar magsäckens saltsyra. Med hjälp av en energikrävande protonpump höjs den syrabildande jonkoncentrationen från blodets nära neutrala nivå till pH = 0.8, i storleksordningen 3000000 (3 miljoner) gånger! Råmaterial för denna process är salt, vatten och koldioxid. För att balansera processen kommer samtidigt alkaliskt bikarbonat att utsöndras i blodomloppet och höjer dess pH, på engelska kallas det ”alkaline tide”(2), en ”alkalisk/basisk våg”. Detta bikarbonat är lätt alkaliskt, och ur kemisk synvinkel motbalanserar det syrabildningen.

När den oerhört koncentrerade saltsyran hamnar i magsäcken späds den ut till ett pH i intervallet 2 till 3, vilket innebär att koncentrationen minskar till cirka 1/50.

En av magsyrans uppgifter är att döda oönskade bakterier och andra organismer som vi äter men även bearbeta födans innehåll av proteiner. Dessa är stora, sammansatta av minst 50 och upp till 27000 aminosyror, sammanrullade som nystan. I den ytterst sura miljön kommer de att rätas ut, denatureras, och utsätts för enzymet pepsin. Pepsinet bryter upp peptidbindningarna så att de olika aminosyrorna frigörs från varandra.

Experiment: Stek några skivor bacon så att de ligger intill varandra. Där muskelkött vidrör varandra eller fett (i mindre utsträckning) kommer bitarna att fastna samman. Det beror på att proteinnystanen har luckrats upp och trasslar in sig i grannen. Detta är värmeinducerad denaturering som gör att magsyran får ett lättare jobb.

Magsyrans koncentration är väl anpassad till foderstaten. En animalieätare med snabb maggenomströmning som ex. hunden har ett pH i paritet med människan medan idisslare med flera och stora magar klarar sig med en betydligt vekare blandning. Vår potenta magsyra visar att vi inte är anpassade till vegankost.

Faktorer som påverkar syraproduktionen är t.ex. hur mycket, främst protein, vi äter och hur mycket vätska vi dricker. Däremot har födans/dryckens pH tämligen begränsad inverkan, spädningseffekten dominerar. Ju mer vi dricker och späder ut magsyran desto mer måste protonpumpen arbeta för att återställa magsyran, bikarbonaterna som samtidigt bildas hamnar i blodet för vidare transport och dess pH stiger.

När magsäcken efter utfört arbete portionerar ut sitt innehåll via nedre magmunnen till tolvfingertarmen neutraliseras blandningen med den tidigare insamlade bikarbonaten och producerar återigen vanligt salt, vatten och koldioxid som transporteras vidare via blodet, samt utsöndras via urinen och lungorna.

Experiment: När vi andas ut koldioxid löser sig en mindre del i munnens vätska och bildar lätt sur kolsyra. Med lämpliga reagenspapper kan man då upptäcka att kraftig ansträngning och motsvarande förhöjda ämnesomsättning sänker salivens pH.

Det är alltså helt logiskt och normalt att både urinens och salivens pH varierar något för att kompensera för de miljonfaldiga skillnaderna inne i kroppen!


(1) Parietalceller är kroppens mest energikrävande. Deras innehåll av mitokondrier (cellens ”kraftverk”) är inte mindre än 35%, högre än för någon annan celltyp.

(2) En ännu kraftigare form av ”alkaline tide” som leder till plötslig pH-höjning i blodet uppkommer vid kräkning. Då minskar magsäckens innehåll av magsyra mycket dramatiskt och måste ersättas omgående vilket ger en kraftig produktion av bikarbonat som höjer blodets pH, i svårare fall till direkt farliga nivåer.

Högintensiv träning

Svenska forskare har klurat ut varför högintensiv intervallträning är så effektiv. Men undvik antioxidanter, de försämrar effekten.

Källa: Ny Teknik

Mycket hög belastning i korta intervall har visats ge en mycket god träningseffekt, framför allt om man tar i beräkning hur kort tid det tar. Föga förvånande tilltalar det många som gärna gör annat än träna timmar i sträck. Men hur det fungerar har varit höljt i dunkel.

– Tre minuter av högintensiv träning bryter ned kalciumkanaler i muskelcellerna. Det leder till en långvarigt förändrad kalciumhantering i cellerna och det är en utmärkt signal för adaptation, till exempel nybildning av mitokondrier, konstaterar forskningsledaren Håkan Westerblad, professor vid institutionen för fysiologi och farmakologi vid Karolinska institutet.

All muskelbyggande träning förutsätter så kraftig belastning att muskelceller förstörs och tvingar fram förnyelse och lite fler celler i förebyggande syfte. Samtidigt ökar antalet mitokondrier, organeller som omvandlar kemisk energi som är bundna i fetter och kolhydrater till den ”valuta” som cellerna använder, ATP (Adenosintrifosfat) och i viss mån ADP (Adenosindifosfat).

All uthållig bildning av ATP/ADP förutsätter god tillgång till syre men långt ifrån all oxidation sker problemfritt, det bildas stora mängder fria radikaler (ROS, Reactive oxygen species) som förstör både både på ett ”positivt” och definitivt negativt sätt. Det positiva i detta sammanhang är att den drar igång den begränsade celldöd som är en förutsättning för muskeltillväxt. Kroppen producerar själv en stor mängd antioxidanter som motverkar en stor del av den oönskade förstörelsen, men många äter dessutom mat och kosttillskott som är rika på antioxidanter.

Forskarna höjer också ett varnande finger för att kosttillskott med antioxidanter som vitamin E och vitamin C kan försämra effekten. I alla fall var det vad som hände när forskarna studerade möss behandlades med en antioxidant före och under en aktivitet som efterliknar den vid högintensiv intervallträning.

– Vår studie visar att antioxidanter tar bort effekten på kalciumkanalerna, vilket kan förklara varför antioxidanter kan försämra svaret på uthållighetsträning, säger Håkan Westerblad.

Förutom forskare vid Karolinska institutet medverkade forskare i Schweiz och Litauen i studien.

Forskarnas resultat har publicerats i den vetenskapliga tidskriften PNAS.

 

Med nuvarande behandlingsmetoder, som vanligen centrerar runt DNA-skador, betraktas cancerceller som livskraftiga, snabbväxande och svåråtkomliga. Redan på 20-talet lanserade Otto Warburg sina tankar att cancercellernas ämnesomsättning var allvarligt störd genom att deras mitokondrier var skadade eller helt ur funktion.

Alla kroppens celler innehåller mängder av mitokondrier vars uppgift är att bearbeta energiråvaror i form av glukos och fettsyror till ATP som är vår faktiska energivaluta. Mer om detta via länkarna längst ner.

Forskning visar att en gemensam egenskap hos (de flesta?) cancerformer är skadade mitokondrier och att det är möjligt att angripa cancercellernas energiförsörjning via denna svaghet.

Dominic D'AgostiniFölj Dominic D’Agostini i 11 minuter när han berättar om flera önskvärda effekter av en ketogen kost.

Han nämner att vid behandling med syre under tryck ökar effekten då cancerceller bildar större mängder fria radikaler, ROS, som vanligen betraktas som ”farliga”. Som jag ser det är det logiskt majoriteten av ATP-bildning i mitokondrier sker i den syreberoende elektrontransportkedjan. Fria radikaler är molekyler som inte är ”färdigbyggda”, saknar en elektron och är på jakt att få tag i en. När detta lyckas är det en annan molekyl som blir en fri radikal och så vidare. Om detta sker i tillräckligt stor omfattning kan cancercellen skadas så långt att den slutligen dör.

Elektrontransportkedjan

Friska mitokondrier har elektrontransportkedjor som fungerar bättre och inte producerar fria radikaler i samma utsträckning.


Motverkar ketoner kakexi vid cancer?

Programmerad celldöd och cancer