Inlägg märkta ‘blodsocker’

Fortsättning från föregående inlägg. Har du inte läst det eller har ingående kunskaper om de två dominerande varianterna av diabetes, insulinberoende typ 1 och typ 2 med nedsatt insulinsvar (”insulinresistens”) så föreslår jag att du börjar där.

Genom vänligt tillmötesgående från en av författarna, Ragnar Hanås, fick jag tillgång till följande studie i fulltext: A 2-yr national population study of pediatric ketoacidosis in Sweden: predisposing conditions and insulin pump use från 2009. Abstract.

The aim was to investigate triggering factors and insulin pump usage (continuous subcutaneous insulin infusion, CSII) at diabetic ketoacidosis (DKA).

Min tolkning: Studien gäller insulinpumpar och diabetisk ketoacidos (hos barn och ungdomar).

  • Diabetisk ketoacidos, DKA, är en potentiellt dödlig komplikation hos insulinberoende diabetiker. Primärt talar vi då om diabetiker typ 1 men även typ 2 med betacellsvikt. Där finns även LADA, en slags typ 1 som utvecklas långsamt i vuxen ålder. Diabetes är komplext, att ”ha” en variant hindrar inte att fler dyker upp.
  • DKA karakteriseras vanligen av ett mycket högt blodsocker samtidigt med höga ketonvärden och lågt pH i blodet. Ur det följer illamående, kräkningar samt vätskeoch elektrolytbrist som i sin tur förvärrar situationen. Ordningsföljden bland symtomen är inte självklar.
  • DKA beror nästan uteslutande på insulinbrist. Det dyker ibland upp fallbeskrivningar på DKA vid normoglykemi (”normalt blodsocker”) men ur min synvinkel är de värden jag sett väldigt höga, 10 mmol/L och uppåt.
  • Höga blodsocker leder inte i sig till DKA även om de uppträder tillsammans. Det är insulinbrist som gör att det normala samarbetet mellan insulin och glukagon bryter samman.

Hos friska samt ”färska” diabetiker typ 2 fungerar samarbetet mellan hormonerna insulin och glukagon bra resp. någorlunda bra men hos insulinberoende diabetiker typ 1 eller ”tvåor” med långt gången betacellsvikt blir det mer komplicerat.

Det löser vi med insulin från penna eller pump!”

Nå, riktigt så enkelt är det inte. Egenproducerat insulin passerar en koncentrationsgradient, högkoncentrerat när det passerar förbi glukagonproducerande alfaceller ut i blodet där det späds kraftigt (från 2000 till 60 mikroU/ml se Ref 01 nedan) när det når levern. I ytterligare utspätt skick passerar det såväl fett– som muskelceller (20 mikroU/ml enligt Ref 01) Varje gång en insulinmolekyl stöter samman med en insulinreceptor och överför sitt meddelande kommer den att absorberas och har därmed gjort sitt. Koncentrationen sjunker därför med början redan vid utsläppet från bukspottkörteln. Detta är både logiskt och önskvärt bland friska, vi vill inte att högkoncentrerat insulin ska ”eka” länge i kroppen och ställa till problem länge efter att dess meddelande är överspelat. Till saken hör att 80% av antalet celler som har insulinstyrda glukostransportörer, GLUT4, finns i levern (Ref 02).

Hos insulinbehandlade, vare sig det sker med penna eller pump, är  lutningen på koncentrationsgradienten mycket mindre, dessutom den rakt motsatta. Först från injektionsstället i underhudsfett via blodets kapillärer, små och större kärl samt vidare till levern och allra sist bukspottkörteln. Rimligen kommer man inte att få samma funktion i kroppen med injicerat som endogent (egenproducerat). (Ref 02) Läs gärna ett tidigare inlägg; Är injicerat insulin ”naturligt”? För att efterlikna den snabba effekten av insulin hos friska använder pumparna (vanligen?) snabbinsuliner. De designas för liten fördröjning och kortvarig effekt och försvinner sedan ur blodet.

In 1999 and 2000, 7.4 and 11.0%, respectively, of children with diabetes used CSII.

Min tolkning: Studien av Hanås publicerades 2009 men byggde på data från 1999 och 2000 då 7.4 respektive 11.0% av barnen hade insulinpump (CSII).

Under dessa två år noterades 142 fall av DKA hos 115 barn varav 30 (11 pojkar och 19 flickor) använde insulinpump.

I studien noterar man att andelen pumpanvändare 2007 hade ökat till 28.8%. Med tanke på att pumpar är kostsamma så är det troligt att de åtminstone till en början främst gavs till de som hade problem att sköta sin diabetes vilket kan bidra till de mediokra resultat som redovisas. Detta är min hypotes och inget som skrivs rakt ut i studien.

Their hemoglobin A1c (HbA1c) was 10.1 +/- 2.0%

Min tolkning: HbA1c (”långtidsblodsocker”) var 10.1 +/- 2.0% (Med dagens skala cirka 95 +/- 15)

Den överlägset vanligaste orsaken till DKA var missade insulindoser, nästan hälften av fallen.

The overall DKA incidence was 1.4/100 patient years in 1999 and 1.7/100 patient years in 2000. For insulin pump users, the DKA incidence was 3.2/100 patient years in 1999 and 3.6/100 patient years in 2000.

Min tolkning: Den totala incidensen av DKA var 1.4/100 patientår för 1999 samt 1.7/100 patientår under 2000. Bland pumpanvändare var förekomsten 3.2/100 patientår för 1999 och 3.6/100 patientår för 2000.

Märk väl att i den totala DKA-förekomsten finns pumpanvändarna inbakade! Det innebär rimligen att de som skötte injektionerna med penna bör ha haft tydligt bättre resultat.

In conclusion, the DKA frequency in CSII users was approximately twice that of patients who used injections.

Min tolkning: DKA bland pumpanvändare var ungefär dubbelt så vanligt som de med vanliga injektioner. (Egentligen jämför man pumpanvändarnas resultat med DKA-gruppen som helhet, se kommentaren ovan.)

Insulin har flera funktioner där några är mer betydelsefulla för diabetiker. Observera att detta inte är någon rankinglista.

  • Det signalerar via insulinreceptorer på cellers ytor som aktiverar en speciell typ av glukostransportörer, GLUT4, som släpper in blodsockret förutsatt att det ”finns plats”, dessutom släpper den enbart glukos från blodet och in i celler.
  • Det hämmar utsläpp av glukagon från bukspottkörteln.
  • Det hämmar utsläpp av glukos från leverns glykogenförråd.
  • Det främjar fettbildning ur blodets överskottsenergi.
  • Det hämmar kroppens utnyttjande av lagrat kroppsfett.

A meta-analysis of studies in young and middle-aged persons showed an odds ratio for DKA of 7.20 (95% CI, 2.95–17.58) with exclusive use of pumps and 1.13 (0.15–8.35) for MDI when compared with conventional therapy (Ref 3 nedan).

Min tolkning: En metaanalys (översikt) av studier bland unga och medelålders visade en riskökning med 7.2 gånger vid pumpanvändning jämfört med multipla dagliga injektioner med 1.13 och konventionell behandling på 1.0.

Denna studie publicerades 1997 och är kanske inte representativ då pumpanvändare med i grunden dålig kontroll kan vara överrepresenterade. Se min hypotes en bit upp.

Recent data from 1041 pediatric CSII patients from 17 countries in Europe showed that the frequency of DKA was 6.6/100 patient years (13).

Min tolkning: Data från 1041 unga pumpanvändare från 17 europeiska länder visade en frekvens av DKA på 6.6/100 patientår.

En observation är att risken för DKA kan öka när insulinpumpar används för att förbättra kontrollen hos patienter med höga HbA1c:

There seems to be an increased risk of DKA when CSII is primarily used to improve metabolic control in patients with a high HbA1c (15).

Av de 30 DKA i studien av Hanås et al som inträffade hos pumpanvändare var flickor kraftigt överrepresenterade, 19 mot 11 pojkar, 72% fler! Min förförståelse är att flickor vanligen är följsammare vad gäller instruktioner men här tar nog en annan faktor över, kroppsfixering. Sänker man insulinmängden tillräckligt minskar hunger, kroppen tar sig istället tillgång till energilager i såväl fett- som muskelceller och vikten sjunker. Man ”insulinbantar” utan att inse riskerna med detta.

Det finns debattörer som hävdar att risken för DKA vid typ 1 ökar farligt mycket med LCHF-kost utan att för den skull presentera studier till stöd för detta. Om det finns, hur stor är riskökningen jämfört med den som denna studie förknippar med pumpanvändning? Finns någon studie om DKA på unga diabetiker typ 1 med LCHF-kost? Enstaka fallbeskrivningar har jag sett, men deras kopplingar till LCHF har varit svaga om ens det.


01) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover – Roger H. Unger and Alan D. Cherrington Gratis fulltext

02) Revised estimates for the number of human and bacteria cells in the body – Ron Sender, Shai Fuchs, & Ron Milo Gratis fulltext

3) EGGER M, DAVEY SMITH G, STETTLER C, DIEM P. Risk of adverse effects of intensified treatment in insulin-
dependent diabetes mellitus: a meta-analysis. Diabet Med 1997: 14: 919–928.

13) DANNE T, BATTELINO T, JAROSZ-CHOBOT P et al. The PedPump Study: a low percentage of basal insulin and
more than five daily boluses are associated with better centralized HbA1c in 1041 children on CSII from 17 countries. Diabetes 2005: 54 (Suppl. 1): A453 (abstract).

15) HANAS R, LUDVIGSSON J. Hypoglycemia and ketoacidosis with insulin pump therapy in children and adolescents. Pediatr Diabetes 2006: 7 (Suppl. 4): 32–38.

Annonser

Diabetes är en samlingsbeteckning för bristande kontroll av mixen* mellan flera möjliga energibärare i blodet. Tyvärr är beteckningen en vanlig källa till missförstånd, särskilt ”ettor” (färre än 10-15% av alla diabetiker) är irriterade när diabetes beskrivs som en livsstilssjukdom där majoriteten av de övriga ingår. En livshotande komplikation för ”ettor” men även andra insulinbehandlade är DKADiabetisk ketoacidos som primärt beror på insulinbrist. Mer om det i nästa avsnitt.

  • Diabetes typ 1 kallades tidigare ungdomsdiabetes då den vanligen debuterar rätt tidigt, före eller under tonåren. De insulinproducerande betacellerna i bukspottkörteln slås ut i stor omfattning eller till och med helt.
  • Diabetes typ 2 kännetecknas av att insulinkänsliga celler i kroppen, lever-, fett– och muskelceller, inte reagerar i önskvärd omfattning. Under några år av den tidiga sjukdomsutvecklingen kompenserar betacellerna genom att öka sin insulinproduktion. Man märker vanligen inte mycket utom att 4 av 5 drabbade börjar öka i vikt. Med tiden kan det resultera i en utmattning som kallas betacellsvikt och ge ytterligare effekter som påminner om diabetes typ 1.

Hormonet glukagon samarbetar med insulin för att förse blodomloppet med en mix av energibärande ämnen baserat på efterfrågan och tillgång. Betaceller i de Langerhanska öarna kan ”mäta” blodsockerhalten och frisätter samt producerar insulin i rimlig relation till behovet. När blodsockret är förhöjt är det logiskt att en dominerande andel av kroppens energibehov tas ur detta samtidigt som insulinet dirigerar överskott till olika kort- och långtidslager. (Glykogen i muskler och lever samt fett i lever och fettväv.)

När blodsockret sjunker i nivå såväl som mängd måste blodomloppet kompletteras med energi från andra källor och det är nu glukagonet träder in. Glukagonet har ingen egen förmåga att analysera blodet utan förlitar sig på insulinhalten i de Langerhanska cellöarna. När den sjunker ökar produktionen av glukagon och tvärtom.** Glukagon aktiverar utsläpp av glukos från leverns glykogenförråd, potentiellt 50-100 gram. Dessutom ökar frisättning av energi från fett samt åtföljande produktion av de tre vattenlösliga energibärare som kallas ketoner. 

  • Ketoner produceras ur fett, är vattenlösliga, kan passera blodhjärnbarriären och förse merparten av hjärnan med både energi och byggmaterial när blodsocker inte räcker till.
  • Ketoner har betydligt högre verkningsgrad än glukos och producerar mindre koldioxid för samma mängd energi.
  • En av de tre ”ketonerna” betahydroxybutyrat, BHB, visar en anmärkningsvärd likhet med fettsyran smörsyra.

Hos friska samt ”färska” diabetiker typ 2 fungerar detta samarbete bra resp. någorlunda bra men hos insulinberoende diabetiker typ 1 eller ”tvåor” med långt gången betacellsvikt blir det mer komplicerat.

Det löser vi med insulin från penna eller pump!

Nå, riktigt så enkelt är det inte. Fortsättning följer…


En liknelse: Bukspottkörtelns många betaceller kan liknas vid radiosändare och de insulinkänsliga cellerna ute i kroppen vid mottagare. Insulinet motsvarar då radiovågorna.

  • Om sändare tappar kraftigt i effekt eller helt enkelt går sönder (motsvarar diabetes typ 1) så är det enkelt att förstå att meddelanden från sändarna inte går fram även om mottagarna är i bra skick.
  • Om mottagarna av någon anledning förlorar delar av sin förmåga kan man ”skruva upp” sändareffekten (motsvarar diabetes typ 2) och fortsatt få fram det önskade meddelandet.
  • Om man under lång tid överbelastar en radiosändare är det rimligt att den går sönder. Då bukspottkörteln innehåller ett stort antal av dessa ”sändare” kan de återstående under en övergångsperiod på flera år fortsatt öka sin effekt och på så sätt når meddelandet fram i någorlunda omfattning men med tiden är det rimligt att drabbas av betacellsvikt vilket resulterar i den ultimata diabeteskombinationen, den jag kallar typ 21.

*) Blodsocker har fått en aura av att vara den ultimata energibäraren i blodet, så simpelt är det inte. Läs åtminstone någon av följande länkar för att nyansera den uppfattningen: Energibärare i blodet, vad vet du? Och kanske inte?Vilken är vår viktigaste energikälla? och Balansera blodsocker?

**) Samspelet mellan insulin och glukagon är mer komplicerat än så, men för detta resonemang är det tillräckligt att veta att när insulinet sjunker kommer glukagonet att öka.

Metformin är ett ganska enkelt ämne och fungerar som grindvakt i tunntarmen (släpper inte –in– glukos till blodet) och levern (släpper inte –ut– glukos i blodet). Läs mer och se en bild av metforminet i Kan diabetesmedicin förlänga livet?

Följden blir att mängden glukos i blodet kommer att minska, blodsockernivån sjunker. 99% av antalet celler i kroppen* behöver inte insulin vid energiupptag via GLUT4 (glukostransportör 4, den enda som styrs av insulin) och -alla- har någon variant av icke insulinberoende GLUT (ex. GLUT1, GLUT2 och GLUT3) för att ta upp ett grundbehov glukos.

Är man då något fysiskt aktiv kommer glukos som redan finns inne i t.ex. muskelceller (muskelglykogen) att användas i tillskott till ett begränsat inflöde. Ju större koncentrationsgradient av glukos mellan blod och cellens inre dess mer glukos strömmar genom ett icke insulinberoende GLUT vilket sannolikt övertolkas som ”ökad insulinkänslighet”.

Inte förrän det finns entydiga data som stöd tror jag att påståenden om att metformin ger ”ökad insulinkänslighet” är korrekta.

Så tänker jag.


*) Av alla celler i kroppen är inte mindre än 84% röda blodkroppar och ingen av dem har insulinreceptorer! Läs mer och bered dig på att bli förvånad i Hur många celler har vi som reagerar på insulin?

Från att ha varit stora och långsamma har de personliga blodglukosmätarna blivit små, smidiga och snabba. Något som tyvärr inte hängt med i samma takt är precisionen.

Vanligen används teststickor med ett litet utrymme längst fram, preparerade med glukosoxidas (GOx) och några andra hjälpkemikalier. Placera stickan i en mätare och sätt en liten bloddroppe vid spetsen. En lång räcka processer startar vilken efter några sekunder ger utslag på displayen.

Mellan din bloddroppe och värdet du ser finns en mängd potentiella felkällor som förhoppningsvis inte samarbetar till din nackdel, men det finns ingen möjlighet att veta om och när det visade värdet är uppåt väggarna.

Bilden visar de stickor jag använder, en obegagnad och en som är strippad på sitt översta lager för att visa dess inte helt okomplicerade inre.

ISO 15197 kräver att personliga glukosmätare i 95% av alla tillfällen ska visa mindre än 20% avvikelse från de som används professionellt i laboratorier.

Blodets pH tillhör de bäst reglerade värdena i kroppen, men i detta sammanhang förutsätter mätmetoden ett visst pH-värde och alla avvikelser gör skillnad. GOx reagerar med en speciell glukosvariant (β-D-glucopyranos) som utgör knappa 2/3 i blodet, en andel som är pH-beroende. Utan att gå närmare in på kemin är precisionen av förståeliga skäl inte så god som den digitala displayen med en decimal förleder oss att tro.

Andra felkällor är omgivningstemperatur vilket gäller både teststickor och elektroniken i mätaren, fyllnadsgraden av blod i den lilla testkammaren, omgivningens fuktighetsgrad, om teststickorna åldrats eller förvarats i felaktiga temperaturer, om du har påtagligt avvikande C-vitamin i blodet, teststället är kontaminerat av t.ex. en godisbit eller liknande.

  • Om du läser av 5,0 mmol/L på displayen kan du förhoppningsvis lita på att i 19 fall av 20 är det korrekta värdet någonstans mellan 4,0 och 6,0 mmol/L.

Är du kolhydraträknare och äter ”som alla andra” ska detta mätvärde ligga till grund för att beräkna måltidens sammansättning där lika generösa felmarginaler är tillåtna på innehållsförteckningarna.

  • Säg att mätaren visar 20% fel i underkant och din mat innehåller 20% mindre glukos/kolhydrater än du tror. Eller tvärtom? Båda dessa fel är fullt tillåtna, kanske inte så troligt att de råkar inträffa samtidigt, men hur ska du veta i förväg?

En taktik som minskar betydelsen av dessa fel bygger på LCHF, ät begränsade mängder kolhydrater, definitivt inte de som kallas snabba. Då behöver du inte medicinera lika mycket och eventuella fel ger små utfall. Diabetesspecialisten Richard K. Bernstein kallar det De små talens lag.

Om du spiller lite sockerhaltig dricka på golvet, låter det mesta torka upp och sedan stiger i det kommer det att klibba. Samma händer i kroppen när monosackarider som glukos (blodsocker) och fruktos glykerar* (slumpmässigt försockrar) hemoglobinröda blodkroppar**. Detta blir särskilt påtagligt för diabetiker av alla schatteringar där blodsockret ofta är förhöjt och dessutom varierar. I labbrapporter redovisas mätvärdet HbA1c, men kallas åtminstone i enklare sammanhang ”långtidsblodsocker”, även av läkare.

HbA1c uppfattas som ett mått på blodsockrets medelvärde över längre tid, vilket bara delvis sant. Det är ett mått på den ackumulerade glykeringen i blodet och ”minns” de höga värdena mer än de bra (lägre). Det krävs lång tids bra värden alternativt i kombination med mycket låga (hypoglykemi) för att kompensera för några få höga (hyperglykemi)

  • I genomsnitt ”lever” en röd blodkropp 120 dagar i blodet. Om en färsk blodkropp råkar bli glykerad (försockrad) redan första dagen på jobbet så kan den hänga kvar ytterligare 119 dagar innan den tas ur cirkulationen. Låga och måttliga blodsocker kan inte ”deglykera” en enda röd blodkropp, bara undvika att förstöra onödigt många nya.

Hos friska ligger HbA1c i intervallet 27 – 42 mmol/mol. Enligt Diabeteshandboken.se skiljer sig målvärden högst avsevärt mellan diabetes typ 1 och typ 2. De förra anses ha god blodsockerkontroll vid <=52, acceptabelt är 52-62 och otillfredsställande >62 mmol/mol. Motsvarande för typ 2 är <42, 42-52 och >52 mmol/mol. Man anmärker att målvärdet för typ 1 borde vara 48 mmol/mol då risken för retinopati, en ögonskada, tydligt börjar öka.

img_2164

  • Låt säga att 5% av de röda blodkropparna är funktionshämmade av glykering. Röda blodkroppar är kroppens överlägset vanligaste celler och står för 84% av hela antalet. Det innebär att drygt 4% av kroppens totala antal celler är satta ur spel. Vid en första tanke låter det hanterligt, men jämför med det antal celler som inte är blodkroppar, 16% av alla. Då är 4,2% glykerade blodkroppar en avsevärd del, ungefär 1/4. Märk väl att 5%/31 är lågt, väl inne de friskas intervall (27-42).
  • Det protein som drabbas är hemoglobin som transporterar såväl  syre som den koldioxid som bildas vid metabolismen, ämnesomsättningen.

Bildtolkning för synskadade: ”Högt blodsocker skadar proteiner.” Länkar till kompletterande artikel på MatFrisk

Vårdens rekommendationer att inte eftersträva påtagligt ”friska” HbA1c är tungt baserade på erfarenheter att ”aggressiv blodsockerkontroll”*** med mediciner visat sig vanskligt. Den utnyttjar vanligen insulin, eget eller injicerat, som snabbt kan sänka blodsockret inte bara till utan långt förbi önskade nivåer och i sämsta fall kan leda till insulinkoma. Den i sin tur kräver någon form av motåtgärd, t.ex. glukostabletter, glukagoninjektion eller annat som återställer blodsockret till rimligare nivå.

  • Nettoeffekten av svängningar, även om de inte går så långt som till påtaglig hypo- eller hyperglykemi, innebär alltid att antalet glykerade röda blodkroppar ökar, HbA1c blir sämre.

”Vården” är helt enkelt rädd för att patienter ska ta skada av eller till och med dö av ”aggressiv blodsockerkontroll” i strävan efter påtagligt friska värden.

Mjuk blodsockerkontroll” via mindre kolhydrater (LCHF) ger små variationer i blodsockernivån och kräver mindre insulin men är uppenbarligen bortom deras horisont.

  • Jag anser att målvärden som ligger på gränsen för att hamna utom friska värden (typ 2) och väsentligt högre för typ 1 sänder helt fel signaler. När det gäller blodtryck och lipider är rekommendationerna för diabetiker betydligt strängare än för övriga.

Min hypotes är att man inom diabetesvården inser att de råd och den vård man ger inte duger för att ge bättre värden. Öppna ögonen för LCHF som grundläggande kostråd för alla diabetiker och tillfoga övrig medicinering efter behov. Information till patienterna är långt viktigare och effektivare än enbart medicinsk intervention, både för enskilda diabetiker såväl som för samhällets ekonomi.

Läs mer i BMJ: Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes   ”Sisteförfattaren”, den som driver och ansvarar för studien, är dansken Arne Astrup! Han har under lång tid varit en framstående ”sockerkramar” men tvärbytte sida under uppmärksammade former för några år sedan.


*) Det finns två snarlika begrepp, glykera och glykosylera. Det första är när en monosackarid slumpmässigt klibbar fast vid t.ex ett protein/aminosyra eller en lipid, fett eller fettliknande ämnen. Glykosylering, däremot, är en styrd process där enzymer placerar monosackariden på en avsedd plats på en annan molekyl.

**) En vuxen människa har ca 5 liter blod. En kubikmillimeter blod innehåller omkring fem miljoner röda blodkroppar. Totalt har en vuxen människa omkring 25 biljoner röda blodkroppar. En röd blodkropp innehåller cirka 300 miljoner molekyler hemoglobin och varje hemoglobinmolekyl kan i sin tur binda upp till 4 syremolekyler (O2). En enda röd blodkropp kan alltså transportera c:a 1,2 miljarder syremolekyler. (Källa: Wikipedia)

***) Dödsfall stoppar amerikansk diabetesstudie  De 5% som nämns i artikeln motsvarar 31 mmol/mol, 6-7% motsvarar 42 – 53. Studier av aggressiv blodsockerkontroll med andra utfall har gjorts men gemensamt är att de görs med mediciner och insulin.

Att minska mängden glukos i blodet, blodsocker, är en naturlig följd av LCHF och leder till förbättrade blodsockernivåer, något som gynnar alla diabetiker. Inom den konventionella diabetesvården finns många som hävdar att kolhydrater/glukos är nödvändigt att äta för överlevnad eller åtminstone god livskvalitet. Vid den pågående diabeteskonferensen presenteras en ny produkt som förväntas revolutionera diabetesbehandlingen.

Empagliflozin

Källa: svt

Empagliflozin är en SGLT2-hämmare som hindrar njurarnas normala förmåga att återvinna glukos ur urinen och återföra den till blodomloppet. Upp till 70 gram glukos per dygn kan på detta sätt kissas ut och minskar därför blodsockerbelastningen i motsvarande utsträckning.

Bland dem som fick den verksamma medicinen minskade risken att dö i hjärt- och kärlsjukdom med 38 procent – en minskning Lars Rydén, medicinprofessor vid Karolinska institutet, anser är dramatisk.

– Det här är ett överraskande fynd, som kommer bli vad man kallar för en milstolpsstudie, ett paradigmskifte.

Medicinens verkar genom att eliminera upp till 70 gram glukos per dygn ur urinen och ger då de dramatiska effekter han betraktar som ”…en milstolpe, ett paradigmskifte.”

Rimligen måste det innebära att det är helt ofarligt och ger en dramatisk hälsofördel för dagens diabetiker att helt enkelt avstå åtminstone 70 gram glukos från maten?

Lite senare i svt-artikeln finns följande att läsa:

Han bedömer att de biverkningar som konstaterats; bland annat urinvägsinfektion och blodtrycksfall, varit relativt få och dessutom inte vanligare i gruppen som fick läkemedlet i jämförelse med dem som fick placebobehandling.

Urinvägsinfektion, varför då? Urin är på grund av den stora förekomsten fria radikaler vanligen steril, men det är ingen garanti för att det inte tränger in en del bakterier och om detta sker i en näringsrik miljö kan de trots allt överleva och driva urininfektioner. Men vad är då en näringsrik miljö för bakterierna? Jo, helt enkelt den glukos man kissar ut vid användning av medicinen ifråga.

When taken in dosages of 10 or 25 mg once a day, the incidence of adverse events was similar to placebo. However, there was a higher frequency of genital infections.

Källa

Genital infections låter bara lagom roligt.

Nåja, lätt fixat, om du sänker ditt intag av glukos från mat med 70 gram/dag får du förmodligen samma dramatiska effekt som professor Lars Rydén förespeglar, utan biverkningar. Sänker du den till LCHF-nivå kan det bli bättre ändå. 70 gram glukoshöjande mat ska väl flertalet kolhydratkramare kunna avstå från om hälsan och livet står på spel?

Eller?

– Vi som har sysslat med diabetesforskning och försökt hjälpa de här patienterna under många år ser dessa resultat som ett genombrott på två sätt. Dels står redan ett läkemedel som minskar risken för förtida död hos de aktuella patienterna till vårt förfogande. Och dels har vi ett uppslag till fortsatta studier, som ska kartlägga varför blev det på det här sättet. Och när vi vet det, ja då kan vi förhoppningsvis utveckla ännu bättre läkemedel.

Om medicinföretagen blir rika som troll har de mer pengar att försörja sina handgångna ”forskare” och de i sin tur kan bli ekonomiskt oberoende.

Diabetesmedicin kan förlänga livet

Metformin, en vanlig medicin mot åldersdiabetes, har visat sig ha märkliga egenskaper.
I en studie kunde forskarna visa att den kan öka livslängden hos möss med så mycket som fem procent.

Källa: Expressen

Metformin tillskrivs mängder av goda effekter trots att det är tämligen ”enkelt” uppbyggt.

Metformin

Riktigt så enkelt som i bilden ovan är det inte, på de två ställen där fyra linjer möts måste du tanka dig att det finns en kolatom och där enkla linjer bara slutar finns också en kolatom med vardera tre väteatomer, metylgrupper.

  • Metformin dämpar leverns glukosproduktion, särskilt tydligt hos diabetiker. En ”medeldiabetiker” typ 2 (sockersjuk) har vanligen en glukosproduktion som är tre gånger högre än hos en frisk och metformin kan minska denna med en tredjedel. (Tolkningar av Engelska Wikipedia)
  • Dessutom minskar glukosupptaget från tarmen, något som märks genom ökad gasproduktion samt ”lösare mage”. Dessutom motverkar användningen av metformin glukosfrisättning som beror av insulinets ”motvikt”, hormonet glukagon. (Samma källa)

Från Expressens Faktaruta om metformin:

Metformin syntetiserades första gången på 1920-talet, men blev inte uppmärksammat förrän 1957 då den franske läkaren Jean Sterne visade att det kunde användas för behandling av åldersdiabetes.
Metformin har varit i allmänt bruk sedan 1960-talet, och är i dag det vanligaste läkemedlet mot åldersdiabetes i de flesta länder i världen. Det används särskilt ofta när patienterna är överviktiga.
På senare år har det framkommit att metformin kan höja livslängden hos rundmaskar. Den nya studien visar att även däggdjur kan leva längre om de ges rätt metformin.
Källa: Nature Communications (TT)

Tja, så nyligt är det inte, jag skrev på gamla MatFrisk Blogg om detta runt 2008:

Detta enligt en studie i Cell Metabolism av Seung-Jae Lee, Coleen T. Murphy och Cynthia Kenyon, ”Glucose Shortens the Life Span of C. elegans by Downregulating DAF-16/FOXO Activity and Aquaporin Gene Expression

”Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on life span itself…..

…Together, these findings raise the possibility that a low-sugar diet might have beneficial effects on life span in higher organisms.”

Nu skall vi inte dra alltför långtgående slutsatser av detta eftersom Caenorhabditis elegans, på vilket försöket utfördes, är en liten rundmask. Den är populär i diabetesforskningskretsar eftersom den är tålig, lätt att studera, har en snabb reproduktionscykel (=kortlivad) och trots sin ”enkla uppbyggnad” har ett insulinsystem som har god likhet med däggdjurens. Dessutom omfattas de inte av etiska regler och andra betänkligheter.

I försöket har man tillfört 2E% D-glukos och noterade att livslängden förkortades med 1/5. Redan 0.1E% resulterade i en signifikant förkortad livslängd.

Ur Expressens artikel:

”Metformin, som har använts vid behandling av åldersdiabetes sedan 1960-talet, har tidigare kopplats samman med minskad risk för cancer och hjärt- och kärlsjukdomar.”

”Forskarna, som har letts av åldersforskaren Rafael de Cabo vid National Institutes of Health i USA, är inte hundraprocentigt säkra på varför metformin har den här effekten, men de påpekar att den i viss mån liknar effekterna av en diet där kalorimängden skurits ned kraftigt – farliga syreföreningar som kan öka den oxidativa stressen och skada celler och organ minskar i omfattning i kroppen, och halterna av antioxidanter ökar. Allt detta leder till att livslängden ökar.”

Den studie som Expressen hänvisar till gäller mushannar och kan därför inte direkt överföras till människor.

Min hypotes ligger i närheten, men eftersom metforminets uppmätta hämmande effekter gäller glukos så anser jag att det är minskningen av glukos i blodet, blodsocker, som har betydelse. Om det stämmer är kolhydratreducering (ex. LCHF) av vår kost ett alternativ väl värt att pröva.