Inlägg märkta ‘glukagon’

Ständigt matas vi med åsikten att övervikt och fetma förorsakar diabetes typ 2, sockersjuka. Inte bara i populärpress utan även inom professionen har denna tågordning accepterats som ovedersäglig sanning som sällan eller aldrig ifrågasätts.

Diabetes typ 2 kännetecknas av att kroppen inte förmår använda kolhydrater i samma utsträckning som friska människor vilket innebär att blodsockret ökar. Man kan enkelt mäta detta genom ett stick i fingret, bloddroppen sugs upp i en teststicka och inom några få sekunder får vi ett mätvärde som tumregelsmässigt motsvarar antalet gram glukos som finns i totala blodvolymen (drygt 5 liter, kvinnor något mindre och män uppåt 6 liter) hos en normalviktig person på cirka 70 kg.

  • En frisk persons blodsocker efter nattfasta är cirka 4-6 mmol/l och upp till 8,7 mmol/l efter en måltid.
  • Mäter man vid två skilda tillfällen ett fasteblodsocker som är >7,0 mmol/l, alternativt att det efter en måltid stiger till >12,2 mmol/l anses man vara diabetiker. Dessa värden kan variera något beroende på källa.
  • Däremellan finns en gråzon där man kan betraktas som prediabetiker, en diabetiker i vardande.
  • Ett standardiserat och klart bättre test är glukosbelastning. Man dricker 75 gram glukos upplöst i vatten och mäter blodsockret efter 2 timmar.

En läkare försåg mig med en studie i avsikt att stödja den konventionella meningen, Changes in BMI and Weight Before and After the Development of Type 2 Diabetes, Helen C. Looker, William C. Knowler och Robert L. Hanson, publicerad i Diabetes Care 2001. Den bygger på data från undersökningar mellan åren 1965 och 2000 vid Gila River Community i Arizona. Trakten bebos av Pima-indianer med unikt hög förekomst av diabetes typ 2. Bland dessa fann man 816 personer som under dessa 35 år befanns ha diabetes typ 2, data kommer från sammanlagt 4226 undersökningar.

Abstract redovisar bland annat:

Before diagnosis of diabetes, there were steady gains in weight: mean BMI climbed between 0.43 and 0.71 kg/m2 per year. After diagnosis, the weight gain declined, and weight loss was generally seen; the mean rate of change of BMI ranged between 􏰌0.61 and 􏰎0.22 kg/m2 per year.

Min tolkning: Före diabetesdiagnosen observerade man en stadig viktökning: medel-BMI ökade mellan 0,43 och 0,71 kg/m2 per år. Efter diagnosen avtog viktökningen till mellan 0,61 och 0,22 kg/m2 per år.

Jaha, dags att acceptera den förhärskande åsikten att övervikt och fetma föregår diabetes typ 2? Nja, inte så fort, låt oss se om studien innehåller data som visar när diabetesutvecklingen gick igång.

Because weight loss in individuals with diabetes results in short-term improvements in glycemic control has become a central strand of initial management of type 2 diabetes. However, good glycemic control is often achieved at the cost of weight gain.

Min tolkning: Då viktnedgång hos diabetiker (typ 2) resulterar i kortvarig förbättrad blodsockerkontroll har denna (viktnedgången) blivit central vid den initiala behandlingen av diabetes typ 2. Emellertid uppnår man ofta god blodsockerkontroll på bekostnad av viktuppgång.

Dessa två meningar innehåller oerhört viktig information, för att förstå dem kan det vara på plats med en repetition av några grundläggande samband.

  • Utan att gå närmare in på mekanismerna kan vi konstatera att insulinpåslag hämmar kroppens fettutnyttjande* samt sänker blodsockret genom att aktivera lever, fettväv och muskler till ett ökat glukosupptag**. Om leverns och musklernas glykogenförråd är fulla eller nästintill gäller det att man är tillräckligt fysiskt aktiv för att inflödet av glukos till musklerna skall fortsätta. Om inte detta sker kommer kroppens homeostas (jämviktsreglering) att öka fettsyraproduktionen och lagring i såväl lever som fettväv (insulin är anabolt, ett byggande hormon medan glukagon är katabolt, nedbrytande/utnyttjande).
  • Insulin är ett hormon med många uppgifter, men vanligen får det en trivial beskrivning som ”en nyckel som öppnar celler för glukos”. Innan detta sker reglerar det dessutom glukagon, ett annat hormon från samma cellsamlingar, de Langerhanska öarna i bukspottkörteln. Glukagon har effekter som till delar är motsatta insulinet. Medan insulin kan sänka blodsockret och därmed dess energibärande förmåga kan glukagonet frisätta glukos samt höjer blodets energiinnehåll från fettväven. Båda ingår i regleringen av energibärande molekyler i blodet där insulin är styrande då den reagerar på blodsockernivån.
  • Om och när glukos i en cell ”byggs om” till fettsyror/fett minskar glukoskoncentrationen och tillåter fler glukosmolekyler att strömma in tillsammans med vardera ungefär 190 vattenmolekyler.
  • Hos en frisk person med goda kostvanor och anpassad fysisk aktivitet fungerar homeostasen, tillfälliga över- och underskott av t.ex. mat och motion utjämnas över tid, han/hon förblir rimligt viktstabil.

Det finns endast ett hormon, insulin, som ”sänker blodsockret” medan fyra av större betydelse kan höja det vid behov, glukagon, kortisol, adrenalin samt tillväxthormon. Till detta kommer katekolaminerna (”adrenalinsläktingar”) L-tyrosin, L-DOPA, dopamin samt noradrenalin. Glukagon kan aktivera fettmetabolismen och därför tillföra energi från ett mycket stort energilager, fettväven.

  • Evolutionen har försett oss med betydligt större beredskap för att höja blodsocker snarare än att som nu ständigt behöva sänka det. Om ett ensamt glukossänkande system överutnyttjas är det inte att förvåna om det i något avseende fallerar i förtid.

Friska människor avger insulinet i omgångar. Först en kortvarig dos som, vid behov, följs av en mindre drastisk men under längre tid. Se den övre kurvan i bilden.

Insulin response healthy vs. diabetic

Grafiken återger principen snarare än faktiska värden. Många källor visar att den första dosen hos friska är betydligt högre. Typiskt hos diabetiker typ 2 är att dosen startar mycket mesigare och övergår i ett långvarigt skede, se nedre kurvan.

Insulinet räcker med råge att dämpa glukagonet vilket innebär att fettmetabolismen blir knäsatt. Gradvis ackumuleras då fett som följd av att det inte används.

Det är både teoretiskt och praktiskt omöjligt att med vetenskaplig stringens avgöra om en studie visar ”sanningen” då det förutsätter att vi entydigt känner den i förväg. Och då är ju studien meningslös, den tillför inget nytt. Det enda vi kan ta reda på är om en studie falsifierar en hypotes eller ej. En ännu ej falsifierad hypotes kan vara en del av en vetenskaplig teori medan en vetenskaplig teori, hur elegant den än verkar, faller om någon av dess hypoteser falsifieras.

Fråga är om min hypotes att diabetesutvecklingen föregår övervikt/fetma falsifieras av studiens uppgifter, låt oss se efter.

These examinations include anthropometric measures, funduscopy, urinalysis, and measurement of plasma glucose levels. Diabetes was diagnosed by a 75-g oral glucose tolerance test according to World Health Organization guidelines or the presence of a documented clinical diagnosis.

Min tolkning: Studien baseras på kroppsmåttögonundersökningar (av mycket små blodkärl i ögonbotten), urinprov och blodsockernivåer. Diabetes diagnosticerades genom glukosbelastning eller dokumenterad klinisk analys.

Ingenstans i texten nämns andra faktorer att avgöra om en person är diabetiker eller ej. Förekomst av prediabetes redovisas inte!

To improve accuracy on duration of diabetes, selection was limited to individuals who had undergone an examination within 4 years preceding diagnosis in which criteria for diabetes had not been met (a non-diabetic examination). Therefore, the maximum period of possible undiagnosed diabetes was 4 years.

Min tolkning: För att öka precisionen av den tid diabetesen varit aktiv begränsades deltagarurvalet till de som genomgått en undersökning utan diabetesdiagnos (a non-diabetic examination) under fyraårsperioden som föregick diagnosen. Den maximala tiden av oupptäckt diabetes typ 2 var då fyra år.

Nå, stämmer det? Ingenstans i denna studie nämns hur lång tid diabetes typ 2 tar för att utvecklas från de allra första stapplande stegen, via prediabetestiden och fram till den dag den diagnosticeras. Det är välkänt att en betydande andel diabetiker typ 2 visar tecken på en eller flera av de så kallade senkomplikationerna redan vid diagnostillfället.

  • Ponera att en person är prediabetiker men hamnar i gråzonen under diagnoskriterierna fyra år före diagnostillfället. Han/hon klassas då som ickediabetiker. Som jag ser det bör prediabetes räknas in i förloppstiden då prediabetiker möter de kriterier som krävs för att lagra överskottsglukos som fettväv.

Redan när blodet varaktigt innehåller 1-2 gram extra glukos inleds senkomplikationerna, om än i måttlig omfattning. Det innebär att redan om blodsockret under betydande tid är 20-40% högre än hos en frisk inleder det ett ”naturalförlopp” som ofta hamnar i amputationer, blindhet och hjärt- och kärlsjukdomar. Av det skälet är det logiskt att homeostasens processer omvandlar överflödsglukos till något användbart och dessutom relativt ofarligt, nämligen naturligt animaliskt kroppsfett.

  • En frisk och normalbyggd människa kan ha 15 kg fett fördelat på många olika organ, inklusive hjärnan. Skulle fettförrådet öka 20-40% (i samma storleksordning som den förhöjda blodsockernivå som ger allvarliga senkomplikationer!) innebär det 3-6 kg, en mängd som knappast är hälsoskadligt, snarare tvärtom.

I studien finns inga uppgifter om hur lång prediabetestiden kan vara, är den alls studerad?

Som jag ser det är påståendet om att den odiagnosticerade diabetestiden är max 4 år inte korrekt.

Låt oss studera Tabell 1  – Characteristics of participants by duration of diabetes in years.

Tabell 1

Andelen män är av någon oredovisad anledning så låg som runt 30%, finns några skäl till detta? Kan det påverka utfallet i någon riktning? (Se tredje kolumnen under pilen)

Intressant är data som inte finns, lägg märke till det inramade utsnittet till höger, där finns bara streck. Man har inte mätt njur– och ögonhälsa förrän efter diabetesdiagnosen! Siffrorna för njurskador (nephropathy) under de första 10 åren efter diagnosen innehåller avgörande information. Under de första två åren redovisas att 2,1% har njurskador, märkligt nog stiger den bara sakta till relativt måttliga 2,9% fortfarande efter 10 år för att sedan hoppa till rejält under de följande åren. Är det någon som tror att nefropatin var obefintlig fram till diagnosen för att sedan stiga i lugn takt under 10 år och sedan fyrdubblas under perioden 10-15 år? I studien motiverar man frånvaron av mätvärden för njur- och ögonskador på följande sätt:

Retinopathy and nephropathy are rare among Pima Indians without diabetes; therefore, analyses of these complications were restricted to examinations after the diagnosis of diabetes (Table 1).

Min tolkning: Retinopati och neuropati är sällsynta bland Pima-indianer utan diabetes, analyser av dessa komplikationer begränsades (på grund av detta?) till efter diabetesdiagnosen.

Om det stämmer är det anmärkningsvärt att nefropatin hoppar till 2,1% under den tvååriga perioden efter diagnosen och förblir i samma storleksordning upp till tio år.

Nefropati är en logisk följd av varaktigt förhöjt blodsocker. De studerade Pima-indianerna har en låg ”naturlig” förekomst av njurskador och den plötsliga ökningen av dessa visar att blodsockret mycket väl kan ha varit förhöjt många år före diagnosen och en följd av pågående diabetesutveckling. Ett liknande mönster kan mycket väl gälla ögonskadorna.


*) Med fettutnyttjande menar jag kroppens användning av fetter/fettsyror som ger kroppens celler användbar energi i form av ADP/ATP, den grundläggande energivalutan.

**) Glukosupptag i celler är passivt i betydelsen att den sker först när det finns en koncentrationsgradient, från högre till lägre koncentration.

***) Många källor menar att diabetiker typ 2 åtminstone under den inledande sjukdomsutvecklingen producerar betydligt större mängder insulin än friska. Detta kan, då insulinets unika blodsockersänkande förmåga saknar backup, leda till s.k. betacellsvikt som förekommer bland ”mogna” diabetiker typ 2, de som både reagerar dåligt på insulin och dessutom producerar så lite att man påminner om diabetiker typ 1, de insulinberoende.

image

Insulin och glukagon samarbetar hos friska för att förse blodet med energi från den mat vi äter och kroppens sparade resurser. Dessa två hormoner har i stort sett motsatta effekter.

Richard Feinman förklarar i denna video Roger Ungers eleganta försök som klargör sambanden. Var beredd att pausa videon många gånger för att tänka efter och repetera, den är på inget vis lätt att greppa i ett kvicktag

Ketoner är ämnen där en syreatom är dubbelbunden till en kolatom mellan två andra grupper, här R och R’imgresDen näringsmässigt mest betydelsefulla ketonen är beta-hydroxybutyrat, faktiskt inte en ”renlärig” keton. Namnet låter skrämmande men det är bara internationellt förståelig ”kemiska”.

  • Beta– berättar var det speciella hos ett ämne är beläget.
  • Hydroxy– beskriver en liten grupp atomer som består av en syre- och en väteatom, en OH-grupp.
  • Butyrat visar att det gäller en kolkedja med fyra kol.

Sätt nu samman denna information på samma sätt som vi bygger upp en ekvation ur dess delar. Vi får då en kort kolkedja som skiljer sig från fettsyran n-butansyra (4 kol, smörsyra, bilden nedan) genom att en väteatom invid den andra kolatomen i kedjan (räknat från metyländen, den ”feta” änden) ersätts med en OH-grupp.

N-butansyra

Detta resulterar i beta-hydroxybutyrat, märk den lilla skillnaden mot förra bilden.

Beta-hydroxybutyrat_2

Kort– och medellånga fettsyror har utomordentligt fördelaktiga hälsoegenskaper, de kan bland mycket annat minska eller eliminera epileptiska anfall och dramatiskt förbättra vissa typer av demens. Framförallt korta fettsyror är lösliga i blodet och kan transporteras dit där de behövs, med ett undantag, hjärnan. Där finns blod-hjärnbarriären för att skydda hjärnan och den sätter stopp för fettsyror.

Men den extra OH-gruppen hos beta-hydroxybutyrat förändrar allt. OH-grupper är speciella såtillvida att det endast saknas en väteatom för att bygga en vattenmolekyl, OH-grupper ”umgås” därför gärna med vatten, ju fler OH desto lättare. Beta-hydroxybutyrat har två sådana hydrofila (vattenälskande) grupper och den lilla förändringen gör att ketonen med största lätthet följer blodet vart som helst i kroppen, även genom blod-hjärnbarriären! En av fördelarna hos beta-hydroxybutyrat är att den är nästan lika energität som motsvarande fettsyra utan att, räknat per energi, dra med sig lika mycket syre som glukos.

Med tanke på dessa goda egenskaper finns ingen anledning att ifrågasätta ketoner/ketos? Med ett undantag!

Våra kroppar behöver energigivande råvaror där hormonerna insulin och glukagon i samarbete fungerar som ”trafikvakter” och förser blodet med energi från såväl mat som redan befintliga lager av energi i kroppens vävnader. Hos personer med kraftigt nedsatt eller obefintlig insulinproduktion fungerar inte denna styrning, glukagonet tar överhanden och aktiverar glukosfrisättning och fettmetabolism inklusive ketonproduktion.

Diabetes typ 1 (kraftigt nedsatt eller obefintlig insulinproduktion) är alltså i grunden en dysfunktion (bristande funktion) i fettmetabolismen till skillnad från diabetes typ 2 (”sockersjuka”, åldersdiabetes) där insulin inte får den önskade effekten på upptag av glukos, blodsocker.

Om och när diabetiker typ 1 tappar kontrollen över glukagonproduktionen ökar frisättning av glukos såväl som fria fettsyror och ketoner. Beta-hydroxybutyrat har en karboxylände (COOH) som ger ämnet svagt sura egenskaper vilket i alla ”normala” sammanhang (ketos) saknar betydelse men hos diabetiker typ 1 med nedsatt förmåga att reglera fördelningen av energiråvaror i blodet kan skapa problem i form av DKA, diabetisk ketoacidos.

Insulin har många funktioner i kroppen, men två av dem är särskilt betydelsefulla i detta sammanhang, glukagonstyrning i bukspottkörteln och glukosupptag från blodet.

Varje gång en insulinmolekyl når insulinreceptorn på en mottagarcell ”fastnar” den och dras in i cellen. Det betyder att ju mer glukos vi äter desto mer insulin kommer att förbrukas (dras in i målceller) och påverkar därmed inte glukagonproduktion/frisättning.* Att öka mängden insulin för att försöka uppnå en slags säkerhetsmarginal mot ketoacidos är dömt att misslyckas då man som kompensation, för att inte hamna i insulinkoma, måste öka mängden glukogena delar av maten. Om man gör det kommer en betydande del av insulinet att förbrukas för att hålla blodsockret under kontroll utan att påverka glukagonet och så löper det vidare.

Mer glukos (kolhydrater) i maten kräver mer insulin, det som ”blir över” styr glukagonet.

Min hypotes är att de som injicerar insulin bör ”grunda” med ett långtidsverkande alternativ för att undvika att helt förlora kontrollen över glukagonet. Detta även om man använder insulinpump med snabbverkande insulin då det inte är helt ovanligt med böjda slangar och lossnade infusionsset.

Kroppens funktioner är dynamiskt beroende av varandra och alla statiska resonemang är dömda att fallera i det långa loppet.


Beskrivningen ovan är inte fullständig, fler samband finns men i sammanhanget har de liten betydelse.

*) Detta resonemang gäller för diabetiker som huvudsakligen injicerar insulin. För ”friska” reglerar det egna insulinet glukagonproduktionen direkt i de Langerhanska öarna. Den blir därför mycket mer exakt och därför är det värdefullt att ha en egen produktion, om än liten.