Arkiv för kategori ‘MCT – Medium Chain Triglyceride’

Kommer du att beröra betydelsen av fettsyrornas längd?

Använder du begrepp som mättade fetter och fleromättade fetter utan att egentligen veta något om bakgrunden? Utom att de mättade är ”farliga” och de fleromättade är ”nyttiga”, förstås. Detta är en länksamling till tidigare blogginlägg på MatFrisk där fett och fettsyror spelar en central roll.

Fett #1: Fettsyror, en introduktion
Oavsett om du är positivt eller negativt inställd till fett som del i mat eller kropp så är det en fördel att känna till den kemiska bakgrunden. Om du tar till dig eller själv använder påståenden som ”undvik mättade fetter, de är farliga” och ”ät mer fleromättade fetter, de är jättenyttiga” så är jag övertygad om att du kan vidga dina perspektiv avsevärt. Det sker inte i en handvändning, därför blir det flera inlägg.

Fett #2: Raka och krökta fettsyror
Dietister och andra med konventionella kunskaper om mat förfasar sig ofta och gärna över att LCHF-are ”utesluter en hel näringsgrupp” och därför äter ”ensidigt och näringsfattigt.” Till skillnad från kolhydrater som huvudsakligen bara finns i tre varianter där glukos är den enda som kroppen direkt kan utnyttja är fettsyror mycket varierade i sin sammansättning, för att inte tala om fetter och ämnen de bildar i kroppen.

Fett #3: Fettsyrors längd och omega-begreppet
Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I #1 visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära, delen av molekylen medan karboxylgruppen är polär och ”umgås” väl med vatten. Hos korta och i någon mån medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

Fett #5: Bygg fett av fettsyror och glycerol
I inlägg 1# – #4 har jag berättat rätt detaljerat om fettsyror. Logiskt sett borde detta vara inlägg #3,5 för att förklara hur fetter byggs upp av sina beståndsdelar och koppla samman dem till fetter.

Fett #4: Hur du bygger din egen fettväv
Fettväv byggs av tre fettsyror sammanlänkade med glycerol till triglycerider lagrade i en stor droppe i fettceller. Dessa är specialiserade och har t.ex. mycket få mitokondrier som används för att skapa ATP, kroppens grundläggande energivaluta. Cellkärnan med sitt innehåll av DNA är förvisat ut i periferin (se bilden till vänster). Genom sitt spartanska innehåll är fettväv normalt är nästan vit. Resten av fettväven utgörs i huvudsak av blodkärl och blod. Detta gör att energitätheten i fettväv är ungefär 7500 kcal/kg, klart lägre än i rent fett.

Ett uns av fettkemi i anslutning till muskel- och fettceller
Våra celler använder ATP, adenosintrifosfat, samt i viss utsträckning ADP, (adenosindifosfat) för sin energiförsörjning. Dessa produceras i stor mängd, i storleksordningen halva till hela kroppsvikten per dygn, i mitokondrier som finns i alla celler. Fettsyror, ketoner och glukos är några energibärare som cellerna tar upp, processar/förädlar för att sedan mata mitokondrierna. I några få av kroppens celltyper är det enbart glukos som fungerar, de röda blodkropparna, delar av njurarna samt en mindre del av hjärnan (uppskattningsvis 1/4 – 1/3 av dess energibehov). Även cancerceller har ett strikt glukosbehov, då deras mitokondrier vanligen är skadade och overksamma. Det senare är särskilt olyckligt då startsignal för apoptos, programmerad celldestruktion, utgår från fungerande mitokondrier.

Nytta av korta fettsyror i tjocktarmen, del 1
Jag har hittat en studie som fascinerar mig. Den är intressant och, som jag ser det, logisk och faktarik. Den kan inte kallas lättillgänglig, man bör vara en nörd och ha gott om tid för att uppskatta den. För att försöka göra innehållet någorlunda tillgängligt planerar jag att dela upp innehållet i flera blogginlägg, hur många får vi se.

Korta fettsyror i tjocktarmen, del 2
The development of the intestinal ecosystem is crucial for many gastrointestinal functions and body health. The intestinal ecosystem essentially comprises the epithelium, immune cells, enteric neurons, intestinal microflora, and nutrients.

Min tolkning: Utvecklingen av tarmarnas ekosystem är avgörande för mag- och tarmkanalens funktion och vår hälsa. Ekosystemet utgörs av dess avgränsningar (epithelium), immunceller, nervsystem, mikroflora och näringsämnen.

Upptag av korta fettsyror, del 3
SCFA (Kortkedjioga fettsyror) tas upp, till skillnad från de flesta andra näringsämnen, i både tunn- och tjocktarm. Provrörsstudier (in vitro) har visat att koleratoxin som förorsakar akuta diarréer motverkas genom uppvätskning i kombination med resistent stärkelse. Det senare är ett råmaterial som tjocktarmens bakterier använder för att producera små men betydelsefulla mängder av n-butyrat (smörsyra, en SCFA).

Butyrat och ulcerös colit, del 4
Ulcerös colit är en inflammatorisk sjukdom i tjocktarmen. Som namnet anger förorsakar den (blödande) sår som dels hindrar tjocktarmens funktion, dels ger blodförluster som kan vara mycket allvarliga. UC uppträder i skov med varierande frekvens och varaktighet och med rätt skötsel kan man leva med den under lång tid utan att den blir livshotande. Även här är SCFA involverat.

Är det stor skillnad mellan glukos och en kort fettsyra?
Dietister och andra nutritionsexperter är mycket tydliga när man tar avstånd från fett som huvudsaklig näringskälla, särskilt när det kommer till mättade fetter med animaliskt ursprung. Ibland tror jag att de inte är nämnvärt bekanta med grundläggande kemi. Som illustration har jag tagit en rak variant av monosackariden glukos samt en mättad fettsyra med samma antal kol.

Varför är fett energirikare än kolhydrater?
”Alla vet” att fett innehåller 9 och kolhydrater 4 kcal/gram. Men hur många vet vad det beror på? Båda består enbart av grundämnena kol (C), väte (H) och syre (O) men i olika proportioner och strukturell uppbyggnad.

Fettväv byggs av fettsyror sammanlänkade tre och tre med glycerol till triglycerider lagrade i en stor droppe i fettceller. Dessa är specialiserade och har t.ex. mycket få mitokondrier som används för att skapa ATP, kroppens grundläggande energivaluta. Cellkärnan med sitt innehåll av DNA är förvisat ut i periferin (se bilden till vänster). Genom sitt spartanska innehåll är fettväv normalt är nästan vit. Resten av fettväven utgörs i huvudsak av blodkärl och blod. Detta gör att energitätheten i fettväv är ungefär 7500 kcal/kg, klart lägre än i rent fett.

Kompletta fettmolekyler kan inte passera cellmembran*, de är för ”storrömt”. Vanligen spjälkas först de två yttre fettsyrorna loss (hydrolyseras**) av ett enzym medan den i mitten kan vara kvar i en monoglycerid***, där glycerolen är bundet till den kvarvarande fettsyran. Därefter kan de passera in i fettceller och åter kombineras till fettmolekyler.

De enskilda fettsyrorna i det som kallas TG (triglycerider) i labbrapporters ”blodfetter” kan ha annat ursprung än fettet i maten, de kan nyproduceras (de novo lipogenesis) i levern med glukos/kolhydratöverskott som grund.

I blodet finns inget som entydigt identifierar ursprunget för en enskild fettsyra och fettväv byggs av överskott som finns i blodet. Kroppens egen produktion av fettsyror begränsas till de med max 16 eller 18 kol, palmitin– och stearinsyra. Dessa kan sedan desatureras där ett par väteatomer avlägsnas av enzymer, fettsyran får en omättnad och den böjda form som gör den ”rinnigare”. Stearinsyran blir oljesyra och smältpunkten sjunker drastiskt från ungefär 69 C till 13-14 C.

Korta (2-5 kol) och medellånga (6-10/12 kol) fettsyror från mat går raka spåret från upptag i tarmen via blodet och till slutförbrukarna, vanligen muskler. De når därför fram och förbrukas snabbt och bidrar därför föga eller inte alls till bildningen av vare sig TG eller fettväv. När längre fettsyror tagits upp ur tarmens innehåll lastas de i stora ”transportfarkoster”, kylomikroner/chylomikroner, och transporteras vidare i lymfsystemet. Cirkulationen i lymfsystemet är långsam då det inte finns någon egentlig ”pump” liknande blodsystemets hjärta. Med tiden når de en plats där de flyttas över till blodet och vidare till lever, muskler eller fettväv.

Intressant nog har kolhydratätare efter en nattfasta påtagligt större mängder fett i blodet än LCHF-are. Detta syns på labbvärdet TG (triglycerider) som transporteras i lipoproteinet VLDL (Very Large Density Lipoprotein). Allt eftersom VLDL delar ut sitt innehåll minskar det i storlek till IDL (Intermediate Density Lipoprotein)

Min hypotes är att fettväv byggs med protein-, kolhydrat– och/eller fettöverskott som grund. Lägg märke till det gemensamma i påståendet: ÖVERSKOTT av energibärare i blodet!

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror  Fett #3: Fettsyrors längd och omega-begreppet


*) Den rådande uppfattningen är att fettsyror och monoglycerider kan passera rakt genom cellmembranen men tecken antyder att det kan finnas alternativa transportmöjligheter, vi får se med tiden.

**) Hydrolysering innebär att en vattenmolekyl ”petas in” i skarven mellan glycerol- och fettsyramolekylen. Den delas upp i sina delar och återställer de ursprungliga OH-grupperna. Hydro syftar på vatten och lysera på att det faller isär, separerar.

***) Om du tittar på innehållsförteckningar på processad mat, särskilt lågfettvarianter med högt vatteninnehåll, är sannolikheten stor att du ser att den innehåller ”mono- och diglycerider”. Dessa är ”nästanfetter” och 1/3 respektive 2/3 av deras beståndsdelar av fettsyror borde redovisas i fettinnehållet. Dessa ”nästanfetter” används används av industrin när man producerar hittepå-fetter då de lätt umgås med fett och samtidigt binder skapligt stora mängder vatten via de oanvända OH-grupperna på glycerolmolekylen.

Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I första delen av serien visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära*, delen av molekylen medan karboxylgruppen är polär* och ”umgås” väl med vatten. Hos korta och medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

När fett nått förbi magsäcken/tolvfingertarmen är det emulgerat som ytterst små fettdroppar av gallan. Ungefär som diskmedel löser upp det feta i disken. När fettdropparna når tarmslemhinnan bearbetas de av lipaser, enzymer som delar upp fettmolekylen i beståndsdelar så att de kan passera in genom cellagret. Jag återkommer till det i ett senare inlägg.

  • De långa fettsyrorna återkombineras till fettmolekyler och packas i vattenlösliga transportfarkoster, kylomikroner, som går in i lymfsystemet. Då det inte finns någon ”motor” som driver på går det långsamt, men förr eller senare hamnar de i blodet för vidare befordran.
  • De korta och medellånga lotsas direkt till blodet och når snabbt olika slutförbrukare som t.ex. muskel– och leverceller. De är utmärkta som ”snabb energi” och lagras inte i fettväv.

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror

SCFA, Short Chain Fatty Acid, kortkedjiga fettsyror

Jag syftar på de med sammanlagt 2 till 5 kolatomer men indelningar som denna är inte självklara och olika åsikter finns. Effekten av den feta, hydrofoba* kolkedjan i förhållande till den hydrofila* karboxyländen avgör hur lätt den ”umgås” med vatten. Bland SCFA är det den hydrofila karboxyländen som med god marginal bestämmer.

  • Bakterier i tjocktarmen klarar att bryta ner fibrer och vissa andra andra kolhydrater som resistent stärkelse, RS. Ur dessa producerar de 4 korta mättade fettsyror, ättiksyra (2 kol, 60% av mängden), propansyra (3 kol, 25%), butansyra (smörsyra, 4 kol, 15%) samt en spårmängd av valeriansyra (5 kol). Dessa försörjer tarmen med energi, vilket förutsätter att fettsyrorna kan färdas i den vattenrika och därför polära* miljö som tarminnehållet utgör.

Om man äter/dricker SCFA utgör de en snabb energikälla om än inte helt oproblematisk. Ättiksyran, t.ex., måste spädas rejält för att bli drickbar och en varning är på plats då den fräter på tandemaljen. Skölj därför noga, men dröj med tandborstningen så du inte sliter på tandemaljen. Äppelcidervinäger är ett rimligt alternativ att prova för den nyfikne.

Som framgår av namnet är smör en källa (eng: butter) till butansyra. Här är risken för syraattacker på tänderna obefintlig då den sura änden av fettsyran är ”upphakad” av en glycerolmolekyl så länge det är ett fett.

MCFA, Medium Chain Fatty Acid, medellånga fettsyror

Detta är fettsyror med 6-10/12 kolatomer. Fortfarande dominerar karboxyländens förmåga att umgås med vatten, de passerar in genom tunntarmens epitel direkt till blodet och vidare till celler som har behov av dem. Kokosolja är ett utmärkt exempel.

Övriga fettsyror

Allt eftersom den ”feta” delen av fettsyran (metyländen + kolkedjan) börjar dominera försvinner möjligheten att på egen hand följa blodet och en långsammare omväg tar över logistiken. Repetera gärna början av inlägget om du inte minns varför.

Omega-begreppet

Metyländen betraktas av kemister som slutet av en fettsyra och kallas därför omegaänden. (Omega är den sista bokstaven i det grekiska alfabetet). I nutritionssammanhang har den en avgörande betydelse och vissa fettsyror beskrivs och får sina namn med utgångspunkt från omega-änden.

Lägg märke till minustecknet mellan omega och 3, 6 eller andra siffror som kan finnas! Det är inte ett bindestreck utan anger att man räknar bakåt i kolkedjan, med utgångspunkt från kolet i metyländen. Ibland skriver man n-3 eller ω-3

Omega-3, n-3, ω-3

De har sin första dubbelbindning mellan kolatom 3 och 4, räknat från metylgruppen, det finns vanligen fler med två enkelbindningar emellan. Ju fler dubbelbindningar desto mer kröker sig fettsyran mot en spiralform om den är riktigt lång. Då omega-3-fettsyrors krökningar börjar tidigt i kedjan finns det, för en given kolkedjelängd, plats för flera vilket ger fettsyran en spiralform och väldigt rinniga oljor med låg smälttemperatur. Växelvarma djur i mycket kall miljö, t.ex. fiskar i Norra Ishavet, har särskilt mycket omega-3-fettsyror för att alls kunna röra sig i det kalla vattnet vid temperaturer vid och under noll.

Omega-6, n-6, ω-6

Dessa är till en början raka med sin första dubbelbindning mellan kolatom 6 och 7, fler finns vanligen med två enkelbindningar emellan. Vid lika antal kol har omega-6-fettsyror en större andel rak kolkedja än omega-3 vilket gör dem något mindre rinniga. Vegetabiliska oljor från varma miljöer har en större andel omega-6 då de växter de kommer från annars skulle sloka svårt i värmen.

Essentiella fettsyror

Vi kan själva tillverka mättade fettsyror upp till 16-18 kol (uppgifterna varierar mellan olika källor) och ur dessa även enkelomättade med hjälp av enzymer som heter desaturaser**. Vi har däremot inte de speciella desaturaser som kan skapa dubbelbindningar så nära metyländen som vid kol 6 eller tidigare. Dessa måste vi därför få från det vi äter och kallas därför essentiella, livsnödvändiga. Det är omega-3-fettsyran alfa-linolensyra och omega-6-fettsyran linolsyra, råmaterial som kroppen bygger vidare på.


*) Hydro– syftar på vatten, –fil och –fob har betydelser som sannolikt alla förstår. Hydrofil innebär ungefär ”vattenälskande” och hydrofob ”vattenskyende”. Med korrekt terminologi: hydrofila ämnen löser sig i polära och hydrofoba i opolära lösningsmedel. Vatten och därmed blod är polära lösningsmedel.

**) Desaturaser plockar bort två väteatomer, en från vardera näraliggande kol i kedjan. De är specialiserade och kan till exempel räkna. Mer om detta i ett senare inlägg.

Dietister och andra med konventionella kunskaper om mat förfasar sig ofta och gärna över att LCHF-are ”utesluter en hel näringsgrupp” och därför äter ”ensidigt och näringsfattigt.”*

Fettsyror är mycket varierade i sin sammansättning, för att inte tala om fetter och ämnen de bildar i kroppen.

Har du inte läst #1, introduktionen till fettsyror, så föreslår jag att du börjar där.

Mättade fettsyror, SFA (Saturated Fatty Acid)

De kännetecknas av en kolkedja där alla bindningar mellan kolatomer är enkelbindningar och alla kolatomer har vardera två väteatomer är fullbesatt, mättad med väte.

Bilden visar en mättad fettsyra med 4 kolatomer, butansyra 4:0, även kallad smörsyra. 4 står för antal kol och 0 antal dubbelbindningar. Metylgruppen CH3 längst till vänster inleder den feta delen av molekylen, här 3 kol lång, medan karboxylgruppen COOH till höger kan koppla till andra molekyler. Den färgmarkerade väteatomen sitter rätt löst och kan spontant falla bort, binda till en vattenmolekyl och bildar då en H3O+, en oxoniumjon (även kallad hydroniumjon) som kännetecknar syror vilket motiverar beteckningen fettsyra.

Enkelomättade fettsyror, MUFA (Mono Unsaturated Fatty Acid)

En kolkedja med exakt en dubbelbindning innebär även ett par väteatomer färre och kallas enkelomättad.

Bilden visar ett annat sätt att illustrera molekyler, lite mer som de faktiskt ser ut i extrem närbild. Här syns att den har volym och inte är platt som mina schematiska teckningar.

Fleromättade fettsyror, PUFA (Poly Unsaturated Fatty Acid)

Fettsyror med två eller fler dubbelbindningar kallas fleromättade. En logisk följd är att för var och en försvinner dessutom ett par väteatomer med konsekvenser vi berör senare. För att underlätta förståelsen kommer jag att försöka placera karboxyländen till höger i bilden så långt det är möjligt.

 

Cis och Trans-former

En kolkedja har en mycket strukturerad uppbyggnad och den överlägset vanligaste omättnaden i en naturligt förekommande kolkedja innebär att de två väteatomer som saknas har suttit jämte varandra ”på samma sida”, kolkedjan kröker sig då i Cis-form. Om det finns fler omättnader i kedjan sitter de vanligen med två enkelbindningar emellan. En mindre vanlig variant, där dubbelbindningarna sitter med en enda enkelbindning emellan kallas konjugerade fettsyror.

Om de saknade väteatomerna i en dubbelbindning kommer parvis från vardera sidan kallas det trans-form och kedjan får en knick snarare än en krök. I naturen är transfettsyror förhållandevis ovanliga men bakterier hos idisslare gör just den sortens kolkedjor efter speciella mönster.

 

Industrier försöker ”förädla” rinniga vegetabiliska oljor så att de blir mer tjockflytande och härmar smör. De har under lång tid tillsatt nickelspån som katalysator, hettat upp oljan under högt tryck samtidigt som man tillför vätgas. Trycket och värmen gör att väteatomer formligen tvingas in i omättnader. Samtidigt rör sig kolatomer i dubbelbindningar sinsemellan och ren slump gör att naturligt krökta Cis-bindningar kan vridas om till förhållandevis rak Trans-form. Båda effekterna gör oljorna gradvis mer trögflytande och till slut fasta. De växtoljor man använder är långkedjiga och för att de inte ska bli stenhårda redan vid rumstemperatur avbryts härdningsprocissen i förtid vilket lämnar kvar en blandning av cis- och transdubbelbindningar.

Gemensamt för dubbelbindningar är att kolatomerna dras något tätare tillsammans men även att vardera bindningen är ”svagare” än en enkelbindning. Den ”öppna” Cis-formen är känsligare för angrepp utifrån av fria radikaler något som knappt händer enkelbindningar och förhållandevis sällan för transdubbelbindningar. I atom- och molekylskala är de enskilda bindningarnas form och placering helt avgörande för hur en fettsyra beter sig. En fettsyra med en trans-bindning är stelare och kortare än en mättad fettsyra med samma antal kol, den kan ”lura sig in” men aldrig fullt ut ersätta en mättad fettsyra.

Den ökade mättnadsgraden och de stela trans-formerna bidrar båda till att rinniga och billiga växtoljor blir fastare fetter som kan säljas som smörsurrogat och med högre vinst. Tidigare var det mycket vanligt med transfetter i industritillverkade smörsurrogat, men massiv kritik resulterade i att tillverkarna självmant minskade användningen i slutanvändarprodukter.

Livsmedelsverket, som borde ha varit självklara att rensa upp i röran, har mesigt stått vid sidan och knappt deltagit i debatten. De fick utstå mycket förlöjligande när man, för att alls kunna redovisa skadliga effekter, talade om ”transfetter och mättade fetter” som en sammanhållen grupp. Lika fel som man numera gör genom att tala om ”frukt och grönt”.


*) Energin i kolhydrater kommer uteslutande från monosackarider; glukos, fruktos och galaktos. I mat kan de finnas i väsentligt olika sammansättningar, men för att alls absorberas måste de först spjälkas till just de monosackariderna. Det betyder att den som äter enligt konventionella rekommendationer får hälften eller mer av sin energi från enbart de tre monosackariderna. Dessa är renons på egentlig näring och kan med goda skäl kallas tomma kalorier. Hur ”varierat” och ”närande” är det på en skala?

Researchers from the University of Florida have published a study evaluating a high-fat, low-carbohydrate diet in the treatment of glioblastoma brain tumors.

Min tolkning: Forskare vid University of Florida har utvärderat LCHF vid behandling av cancer i hjärnan.

Källa: Medscape

OBS: Detta är en studie på möss som behandlats med glioblastomceller från människa.

Medscape

Kosten motsvarade väl LCHF där 10E% kom från kolhydrater och den huvudsakliga energin kom från medellånga triglycerider, MCT, utvunna ur kokosolja. Studien visade att denna kost ökade den förväntade livslängden med 50% samtidigt som den reducerade tumörtillväxten i liknande utsträckning.

Effekten kom av att den begränsade tumörens energiförsörjning samtidigt som den påverkade signalvägar inom tumören. Preliminära data tyder på att kosten ökar tumörernas känslighet för andra behandlingar som strålning och kemoterapi. Man planerar ytterligare test på andra cancerformer och i kliniska försök.

Medscape kräver registrering som är kostnadsfri.

Läs mer:

Svälta cancer?
Motverkar ketoner kakexi vid cancer?
Programmerad celldöd och cancer
Socker, särskilt fruktos, gynnar cancer