Inlägg märkta ‘triglycerider’

Fettväv byggs av fettsyror sammanlänkade tre och tre med glycerol till triglycerider lagrade i en stor droppe i fettceller. Dessa är specialiserade och har t.ex. mycket få mitokondrier som används för att skapa ATP, kroppens grundläggande energivaluta. Cellkärnan med sitt innehåll av DNA är förvisat ut i periferin (se bilden till vänster). Genom sitt spartanska innehåll är fettväv normalt är nästan vit. Resten av fettväven utgörs i huvudsak av blodkärl och blod. Detta gör att energitätheten i fettväv är ungefär 7500 kcal/kg, klart lägre än i rent fett.

Kompletta fettmolekyler kan inte passera cellmembran* i komplett skick, de är för ”storrömt”. Vanligen spjälkas först de två yttre fettsyrorna loss (hydrolyseras**) av ett enzym medan den i mitten kan vara kvar i en monoglycerid***, där glycerolen är bundet till den kvarvarande fettsyran. Därefter kan de passera in i fettceller och åter kombineras till fettmolekyler.

De enskilda fettsyrorna i det som kallas TG (triglycerider) i labbrapporters ”blodfetter” kan ha annat ursprung än fettet i maten, de kan nyproduceras (de novo lipogenesis) i levern med glukos/kolhydratöverskott som grund.

I blodet finns inget som entydigt identifierar ursprunget för en enskild fettsyra och fettväv byggs av överskott som finns i blodet. Kroppens egen produktion av fettsyror begränsas till de med max 16 eller 18 kol, palmitin– och stearinsyra. Dessa kan sedan desatureras där ett par väteatomer avlägsnas av enzymer, fettsyran får en omättnad och den böjda form som gör den ”rinnigare”. Stearinsyran kan då bli oljesyra och smältpunkten sjunker drastiskt från ungefär 69 C till 13-14 C.

Korta (2-5 kol) och medellånga (6-10/12 kol) fettsyror från mat går raka spåret från upptag i tarmen via blodet och till slutförbrukarna, vanligen muskler. De når därför fram och förbrukas snabbt och bidrar därför föga eller inte alls till bildningen av vare sig TG eller fettväv. När längre fettsyror tagits upp ur tarmens innehåll lastas de i stora ”transportfarkoster”, kylomikroner/chylomikroner, och transporteras vidare i lymfsystemet. Cirkulationen i lymfsystemet är långsam då det inte finns någon egentlig ”pump” liknande blodsystemets hjärta. Med tiden når de en plats där de flyttas över till blodet och vidare till lever, muskler eller fettväv.

Intressant nog har kolhydratätare i allmänhet påtagligt större mängder fett i blodet än LCHF-are. Detta syns på labbvärdet TG (triglycerider) som transporteras i lipoproteinet VLDL (Very Large Density Lipoprotein). Allt eftersom VLDL delar ut sitt innehåll minskar det i storlek till IDL (Intermediate Density Lipoprotein)

Min hypotes är att fettväv byggs med protein-, kolhydrat– och/eller fettöverskott som grund. Lägg märke till det gemensamma i påståendet: ÖVERSKOTT av energibärare i blodet!

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror  Fett #3: Fettsyrors längd och omega-begreppet


*) Den rådande uppfattningen är att fettsyror och monoglycerider kan passera rakt genom cellmembranen men tecken antyder att det kan finnas alternativa transportmöjligheter, vi får se med tiden.

**) Hydrolysering innebär att en vattenmolekyl ”petas in” i skarven mellan glycerol- och fettsyramolekylen. Den delas upp i sina delar och återställer de ursprungliga OH-grupperna. Hydro syftar på vatten och lysera på att det faller isär, separerar.

***) Om du tittar på innehållsförteckningar på processad mat, särskilt lågfettvarianter med högt vatteninnehåll, är sannolikheten stor att du ser att den innehåller ”mono- och diglycerider”. Dessa är ”nästanfetter” och 1/3 respektive 2/3 av deras beståndsdelar av fettsyror borde redovisas i fettinnehållet. Dessa ”nästanfetter” används används av industrin när man producerar hittepå-fetter då de lätt umgås med fett och samtidigt binder skapligt stora mängder vatten via de oanvända OH-grupperna på glycerolmolekylen.

För överlevnad är biologiska system beroende av många samverkande mekanismer, sammanfattade i begreppet homeostas, detta innebär att kroppen som helhet är stabil trots varierande betingelser, här några viktiga exempel.

  • Vår kroppstemperatur är påfallande jämn i ett smalt intervall där våra enzymer arbetar effektivt, bara några få grader från nivåer som dödar oss.
  • Mer än två tredjedelar av vår kropp är vatten, det enskilt viktigaste ämne vi ständigt måste ha tillgång till för att övriga processer skall vara meningsfulla. Homeostasen ger oss törst som signal att dricka och urinen transporterar bort både vätska och avfall inklusive en del av det vi ätit/druckit i överskott.
  • Blodet bär runt energiråvaror till alla våra celler från maten men även från det vi sedan tidigare lagrat i olika förråd i form av fettsyror, aminosyror och glykogen. 

Hos en frisk person ger en fullt fungerande homeostas förmågan att anpassa sig till i stort sett alla Jordens miljöer så när som de med extrema temperaturer och syrebrist. Detta kallar jag metabol flexibilitet. Om sjukdom eller livsstil ständigt driver en eller flera av homeostasens ingående parametrar till eller nära sina ytterlägen blir vi metabolt inflexibla.

Figure-1-Metabolic-flexibility-and-metabolic-inflexibility-model-for-postabsorptive-and

Källa: researchgate.net

Homeostasen använder ett antal hormoner för att förse blodet med energibärande ämnen beroende på förutsättningarna. Dit hör glukagon, kortisol, adrenalin och tillväxthormon. Insulin samverkar med och motverkar effekterna av glukagon, men har även andra effekter inom homeostasens ramar.

  • Insulin ökar glukosupptag samt glykogensyntes (lagrar undan blodsocker) i muskler och lever.
  • Insulin sänker kroppens glukoneogenes (nyproduktion av glukos).
  • Insulin ökar fettsyrasyntesen i levern, möjligen även i fettväven.
  • Insulin ökar fettcellers upptag av blodsocker som bildar glycerol och binder tre fettsyror till en triglycerid, en fettmolekyl. Den senare processen kallas förestring och innebär att en vattenmolekyl avskiljs där fettsyrorna och glycerolen binder till varandra. Var gång det bildas en fettmolekyl i fettväven avges tre vattenmolekyler till blodet.
  • Insulin förhindrar fettcellernas triglycerider att spjälkas till sina beståndsdelar (lipolys) som förberedelse att transporteras i blodet.
  • Insulin förhindrar nedbrytning av protein. Detta innebär att skadade vävnader inte avlägsnas, redan insulinnivåer man når efter en vanlig måltid räcker.
  • Insulin ökar upptaget av cirkulerande aminosyror. Detta ger en anabol effekt (”byggande”).
  • Insulin ökar produktionen av magsyra.
  • Insulin minskar njurarnas avgivning av natrium.

Flera andra effekter av insulin finns.

Friska människor kan anpassa sig till mycket skilda livsbetingelser, detta beroende på en hög flexibilitet i homeostasen. Ett ständigt höjt insulin, oavsett om det beror på den mat vi äter, injicerat insulin eller på hög egen produktion, hämmar kroppens förmåga att hantera och mobilisera alternativa energikällor, vi blir metabolt inflexibla. Min övertygelse är att en artegen kost (det vi ätit under större delen av evolutionen) ger god, möjligen optimal, metabol flexibilitet.

Metabol inflexibilitet kan resultera i svajigt blodsocker och/eller oönskad kroppsmassa. Något du känner igen?


Vår kropp är ett nätverk av celler som kommunicerar med sin lokala omgivnining men även tar order från avlägsna källor via hormoner. Celler omges av dubbelväggiga membran för att skilja insidan från omgivningen. I membranen finns specialiserade portar som släpper in ämnen cellen behöver. Ut kommer dels avfall, dels ämnen som cellen producerar. Det finns vissa likheter med datorer (celler) i lokala nätverk (samverkande celler) och vidare till Internet (hormoner).

Dagligen åt deltagarna något mindre än 75 gram kolhydrater, 13 gram fett och 45 gram protein, sammanlagt 600 kcal, en svältkost som Stefan Rössner och andra InoUtare utan nämnvärd framgång försökt promota hos frilevande människor. Under en följd av år har de som förespråkar magoperationer av diverse schatteringar visat fördelar av en påtvingad svältkost, men frågan är hur det fungerar på sikt, när de egna fettlagren sinar?

Normalisation of both beta cell function and hepatic insulin sensitivity in type 2 diabetes was achieved by dietary energy restriction alone.

Källa: Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol

  • Om vi antar att det krävs 2500 kcal/dag (eller vilken siffra du tycker är motiverad) så går det inte att i längden klara sig på studiens 600 kcal/dag, inte heller är det seriöst att räkna på den mindre mängden och dra slutsatser med detta som bakgrund.

Jag skulle uppskatta om någon/några kan peka på (åtkomliga) studier som tydligt tar hänsyn till detta. De kanske finns, även om jag aldrig stött på dem.*

  • Gemensamt för alla som går ner kraftigt i fettmassa, speciellt under kort tid, är att de använder stora mängder av det egna kroppsfettet. Här är det i medeltal 12,6 kg på 8 veckor, alltså 225 gram per dag, motsvarande fettmängden i mer än ett halvt normalstort smörpaket!**

Tumregel: Varje kilo nedgång som sker från fettväv innebär 830 gram naturligt animaliskt fett som måste räknas in, kvantitet såväl som kvalité. (1 kg fettväv = 7500 kcal, absolut inget vegetabiliskt fleromättat fett!). Eventuella hälsofördelar i uttalade svältstudier måste därför bedömas mot denna bakgrund. Att äta några gram här och där av diverse ”nyttiga näringsämnen” i en svältkost lär ge ett marginellt bidrag, sett i ljuset av helheten.

Min åsikt: Utgå från den sammanlagda metabolismen och dra slutsatserna baserat på detta.

Ju mindre och långsammare viktnedgång desto mindre bidrag från de naturliga animaliska fetterna ur kroppens eget lager, sannolikt även avsevärt färre upplevda/rapporterade hälsofördelar. Hos den som äter en ”balanserad energimängd” av blandkost och förblir viktstabil kommer en del kolhydrater att mellanlagras som glykogen, fettsyror eller rent fett allt mellan sekunder till några timmar, men de ackumuleras inte till störande viktuppgång.

vLCD - Insulin sensitivity
Tester av s.k. insulinkänslighet*** gjordes under studiens gång. Den perifera känsligheten ute i kroppen visade sig, förmodligen till studieförfattarnas förtret, inte förbättras. Av det skälet kommenteras denna observation knappt alls. Som jag ser det är observationen fullt logisk och i linje med de faktiska händelserna i kroppen.

  1. Energi i form av glukos är ytterst platskrävande, en enda glukosmolekyl drar med sig ett följe av 190 molekyler vatten.
  2. Av det skälet ryms inga stora mängder i en cell och trots att insulinet mycket väl kan ha öppnat GLUT4-transportörerna på vid gavel så passerar bara små mängder in. Varför?
  3. Cellerna anpassas till fettmetabolism och har fullt upp med energi från fett/fettsyror/ketoner. Då redan lagrat glukos i form av glykogen inte förbrukas nämnvärt kommer det utrymmeskrävande blodsockret inte in!
  4. Nedsatt insulinsvar är då en logisk följd av att cellerna har gott om energi och ingen plats finns i härbärget.
  5. Eventuellt är det nedsatta insulinsvaret (nedsatt insulinkänslighet) en misskreditering av ett helt normalt fysiologiskt förlopp hos personer som är väl anpassade till fettmetabolism, som t.ex. LCHF-are.

Uppföljningen efter 12 veckor:

  1. Blodsockret föll när kolhydratbelastningen minskade till 75 gram/12E%.
  2. Lika väntat är att deltagarna ökade i vikt när kosten sannolikt ”normaliserades” efter studieperioden, + 3,1 kg/4v = +111 gram/dag att jämföra med viktnedgångens 15,3 kg/8v = -273 gram/dag.
  3. Inte oväntat att de övriga värdena förblev goda fram till 12 veckor, deltagarna hade under 8 veckor lotsats ut ur det hörn man befunnit sig och det tar säkert mer än 4 veckor för dem att ställa sig där igen.
  4. Att fasteblodsockret stigit från lägstavärdet 5,7 till 6,1 mmol/l är hanterbart. Att tre av deltagarna återvänt till diabeteslägret, bedömt genom en glukosbelastning, är illavarslande.

En andra uppföljning borde därför ha skett efter minst lika lång tid som studietiden, alltså vecka 16 eller senare. Med tanke på den uppmätta viktuppgången på 111 gram/dag vore det motiverat att göra ytterligare en uppföljning, (15300/111 = 138 dagar) 20 veckor efter studiens avslut.

En sidoobservation; 75 gram tillfört glukos/dygn räckte för att upprätthålla ett ”normalt” blodsocker, detta trots att hjärnan antas behöva cirka 120 gram glukos/dygn. Min övertygelse är att behovet är betydligt lägre än så, baserat på egna långvariga erfarenheter med i huvudsak mindre än 20 gram/dag.

This study demonstrates for the first time the time course of a return of normal beta cell function and hepatic glucose output by acute restriction of dietary energy intake in individuals with type 2 diabetes.

Diabetes typ 2 kan alltså förbättras avsevärt, enligt studieförfattarna till och med reverseras i sitt förlopp, om man ändrar sin mat så att kolhydratmängden sjunker avsevärt samt att fettmängden och kvalitén stiger till den som en dedikerad LCHF-användare siktar mot. Att fördelarna kommer av en ”drastisk minskning av energiintaget” är påtagligt enögt beskrivet. All förändring av energimängden innebär ändring av en eller flera av dess beståndsdelar.

Plocka fram studier där deltagarna gått ner ordentligt i vikt under en relativt kort tid och gör motsvarande beräkningar som ovan. Sannolikt kommer du att bli lika förbluffad som jag över resultaten, särskilt när du samtidigt tar hänsyn till de lovord som studiernas författare brukar använda om de uppnådda fördelarna.

Fysiologin bakom diabetes typ 2 är ofullständigt utforskad men här får vi vetenskapligt stöd för ett enkelt och praktiskt verktyg att hantera den, LCHF, nödtorftigt maskerad som svältkost.

Kunskaper att bära med sig:

  1. Diabetiker typ 2 bör minska sin kolhydratkonsumtion drastiskt och på så sätt förbättra sin blodsockerprofil. (Lägre genomsnitt och mindre variation)
  2. Studien visar att naturliga animaliska fetter är inte bara ofarliga utan ökad metabolisering av dem (till en början genom viktnedgång, sedan via konsumtion typ LCHF) är förknippade med förbättrade hälsoparametrar.
  3. Kraftigt ökad fettmetabolism, i vart fall från kroppens egna lager, reducerar leverförfettning och ger bättre fettstatus i bukspottkörteln.

Ska bli intressant att se hur de ”konventionella diabetesbehandlarna” tar sig an detta.


*) Detta påstående gällde åtminstone hösten 2011 när jag fann studien och större delen av denna serie skrevs.

**) Smör innehåller 80% fett vilket innebär att det finns 400 gram fett i ett halvkilospaket.

***) Jag ogillar begreppet insulinkänslighet och nedsatt insulinkänslighet och vill ersätta det med nedsatt insulinsvar. Fenomenet är lätt att mäta, så tillvida existerar det, men förklaringarna bakom spretar åt olika håll.

Lipider är en samlande beteckning på organiska ämnen som inte löser sig i vatten men i organiska lösningsmedel. Gränsen mellan lipider och vattenlösliga ämnen är inte knivskarp, det finns en gråzon. I populärpress och bland läkare som inte är så noga benämns lipider i blodet blodfetter, trots att få av dem har någon egentlig koppling till vare sig fetter eller deras beståndsdelar, fettsyror.

För att kunna transportera lipider i blodet finns olika strategier, en av dem är att koppla längre fettsyror* till ett vattenvänligt, hydrofilt, protein som heter albumin. Trots att långa fettsyror är hydrofoba, vattenskyende, kommer albuminet att övervinna problemet.

En annan strategi är att skapa speciella transportfarkoster, lipoproteiner, med ett inre som tilltalar lipider och en utsida som fungerar med blod/vatten. De byggs av ett enkelt lager av fosfolipider, två fettsyror (vända inåt), en sammanbindande glycerol samt en utsida av fosfat bundet till en vattenvänlig polär molekyl.

Lipoproteiner produceras i tarm och lever och förses med varierande innehåll för olika mottagare. Med en närmast brottslig förenkling kallas de ”kolesterol” såväl av populärpress som många läkare och preparatindustrin. För att dessa transportfarkoster skall hamna hos relevanta mottagare har de ”avsändare” och ”adresslappar” som fått samlingsnamnet apolipoproteiner. Det finns 6 olika klasser med ett gäng subtyper.

Efter många år med ”bra kolesterol” och ”dåligt kolesterol” som inte gett nämnvärd kunskap har man så smått börjat titta lite mer närsynt på lipoproteinernas innehåll och vart de är ämnade. Låt oss ta följande exempel:

Lipid biomarkers and long-term risk of cancer in the Women's Health Study

Källa: Abstract Lipid biomarkers and long-term risk of cancer in the Women’s Health Study. Chandler PD, et al. Am J Clin Nutr. 2016.

Abstract inleds med ett påstående som, enligt mig, inte är entydigt:

Lipid biomarkers, such as HDL-cholesterol concentrations, have been shown to have positive, inverse, and null associations with total, breast, and colorectal cancer risks.

Min tolkning, inte nödvändigtvis den författarna avsåg: Biomarkörer bland lipider som t.ex. HDL har visats ha såväl positiva som negativa och obefintliga samband med cancer, såväl total som bröstcancer och tjocktarmscancer.

Tvetydighet kan uppstå om man tänker sig att de olika förekomsterna (positiva, negativa och obefintliga) var avsedda att kopplas till vardera av de olika cancervarianterna.

Studies of novel lipid biomarkers, such as apolipoprotein A-I (apo A-I) and apolipoprotein B-100 (apo B-100), and cancer risk have been sparse, to our knowledge.

Min tolkning: Biomarkörerna apo A-I och apo B-100 och deras koppling till cancer är sparsamt studerade.

Studien utfördes på 15602 kvinnor med hälsorelaterade yrken (sjuksköterskor?), 45 år och äldre samt friska vid inledningen av studien. Under studiens gång inträffade 2163 fall av cancer (864 bröst-, 198 tjocktarms- och 190 lungcancer) samt 647 dödsfall beroende på cancer.

Total cancer risk was significantly lower in the highest quartile of apo A-I (adjusted HR: 0.79; 95% CI: 0.70, 0.90;P-trend = 0.0008) and HDL cholesterol (HR: 0.85; 95% CI: 0.75, 0.97;P-trend = 0.01).

Min tolkning: Total förekomst av cancer var lägre (-21%) hos de med högst apo A-1 och HDL

Vad är apo A-1? Det är en ”adresslapp” som sätts på de kylomikroner (mycket stora lipoproteiner) som transporterar fettsyror från tunntarmen via lymfsystemet och till blodet. Ökar man andelen fett i kosten stiger alltså apo A-1! I blodet återvinns/överförs apo A-1 till lipoproteinet HDL (”det goda kolesterolet”). Apo A-1 antas vara kopplat till en ”anti clotting effect”, hämmar blodets tendens att koagulera.

For site-specific cancers, significant associations included colorectal cancer risk with HDL cholesterol (HR: 0.63; 95% CI; 0.41, 0.98;P-trend = 0.03), triglycerides (HR: 1.86; 95% CI: 1.17, 2.97;P-trend = 0.02), and apo B-100 (HR: 1.60; 95% CI: 1.03, 2.49;P-trend = 0.006) and lung cancer risk with HDL cholesterol (HR: 0.59; 95% CI: 0.38, 0.93;P-trend = 0.01).

Min tolkning: Högre HDL associerades med 37% lägre risk för tjocktarmscancer och 41% lägre risk för lungcancer medan högre TG (triglycerider) höjde med 86%. Högt apo B-100 associerades med 60% högre förekomst av tjocktarmscancer.

Vad innebär apo B-100? Det är ett dominerande apolipoprotein hos alla lipoproteiner, så när som HDL. Apo B-100 binder fysiskt till mottagarceller vars receptorer signalerar att de behöver de ämnen som transporteras i de aktuella lipoproteinerna.

LDL cholesterol was not significantly associated with risk of total cancer or any site-specific cancers. In time-dependent models that were adjusted for the use of a lipid-lowering medication after baseline, these associations remained.

Min tolkning: LDL (”onda kolesterolet”) associerades inte med vare sig total cancerförekomst eller någon av de specifikt studerade. Där ”blodfettsänkare”användes efter studiens inledning användes ändrades inget.

Så kommer slutklämmen som åtminstone jag uppfattar som avsiktligt missledande:

Lipids were associated with total, lung, and colorectal cancer risks in women.

Min tolkning: Lipider (”blodfetter”) befanns associerade till såväl total som lung- och tjocktarmscancer.

Hur uppfattar du detta, rent spontant? Har du läst texten med eftertanke vet du att de inblandade lipiderna i huvudsak kunde kopplas till sänkta cancerrisker men här lyckas man ge intryck av att det var precis tvärtom!

Lifestyle interventions for heart-disease prevention, which reduce apo B-100 or raise HDL cholesterol, may be associated with reduced cancer risk.

Min tolkning: Livsstilsförändringar, avsedda att förhindra hjärtsjukdom, som sänker apo B-100 eller ökar HDL kan (may) kopplas till en sänkt risk för cancer.

Lägg märke till att man inte nämner ”blodfettpåverkande” medel, t.ex. statiner. Inte heller föreslår man något direkt manipulerande av dem, förhoppningsvis inser man att de egentliga orsakerna finns att hämta på annan plats. Att påpeka att mer fett i maten ger fler apo A-1 i ”systemet” känns kanske lite okonventionellt?


*) Ju längre en fettsyra är desto svårare har den att umgås med vatten. De riktigt kortkedjiga har inga som helst problem med det, se t.ex. myrsyra (1 kol) och ättika (2 kol). Dessutom finns de medellånga (MCT) med upp till 12 kol som i viss utsträckning kan följa blodet utan hjälp av albumin.

Kvoten apo B-100/apo A-1 anses numera vara en hyfsad prediktor (förutsäger) risken för hjärtsjukdom.

Läkaren Björn Ekengren har, med anledning av sin beprövade erfarenhet av LCHF för diabetiker, sänt detta brev till Uppdrag granskningSVT.

”Hej!

Jag heter Björn Ekengren och är distriktsläkare (specialist i allmänmedicin) på Trollbäckens Vårdcentral i Tyresö. I mitt arbete kommer jag dagligen i kontakt med diabetiker, för vilka kosten har en nyckelroll i behandlingen.

De senaste åren har jag mer och mer börjat rekommendera mina diabetiker (både typ I:or och II:or) att dra ner på kolhydrater i kosten till förmån för fett som energikälla, med remarkabla resultat. Förutom att deras blodsockervärden förbättrades, vilket jag aldrig tidigare sett med de konventionella råden rörande kost och motion, sågs ej heller den försämring i deras blodfettsvärden som man förväntade sig med ökat intag av fett, särskilt mättat fett. Tvärtom fick patienterna bättre blodfetter (lägre halter triglycerider och högre HDL) när de ökade sitt fettintag. Således har jag fortsatt att rekommendera s k LCHF-kost till mina diabetiker, då det ligger i linje med både den senaste vetenskapen och alltså med min egen beprövade erfarenhet.

Nu kommer anledningen till att jag kontaktar er: De gångna dagarna har det enkelsidigt i media lyfts upp argument för att LCHF-kost skulle vara farlig för barn med typ I-diabetes. Ett tragiskt, fiktivt fall presenterades på en intressegrupps hemsida (http://dagensdiabetes.info/…/2165-barn-med-typ-1-diabetes-8…), där ett barn farit illa då barnet endast fått äta LCHF-kost och inte fått något insulin – det senare bör poängteras är livsfarligt för alla typ 1-diabetiker, oavsett kost.

Detta fall lyfts sedan fram av Sveriges Radio, men där framgår inte dess fiktivitet: (http://sverigesradio.se/sida/artikel.aspx…). Dr Gun Forsander intervjuades, vilket också sedan fördes vidare av SVT: (http://www.svt.se/…/overlakare-i-goteborg-varnar-for-lchf-d…).

Till saken hör då att Dr Forsander skrivit texten till de kostråd som ges svenska barn med diabetes; (http://nordisknutrition.se/…/1004_s33-35_Mat_vid_diabetes_h…). Nordisk nutrition ges i sin tur ut av SNF, Swedish Nutrition Foundation, en organisation som säger sig ”främja nutritionsforskning och dess praktiska tillämpning”. Undertecknad är dock skeptisk till den opartiskhet de säger sig besitta, dels då det i deras styrelse sitter representanter för Pågen AB, Lantmännen och Nordic sugar (http://snf.ideon.se/verksamhetom-snf/styrelse/), dels då man i deras medlemsföretag utöver dessa företag kan hitta namn som Coca Cola, McDonalds och Nestlé, m fl. Således inte företag som har i sitt intresse att varken barn med diabetes eller folk i allmänhet minskar på intaget av kolhydrater, särskilt inte socker.

Dagens Nyheter var snara att hänga på storyn (http://www.dn.se/…/riskfyllt-ge-lchf-kost-till-barn-med-di…/), liksom andra media. Anknytande till denna artikel väljer sedan DN också att rapportera att kritiker av LCHF-kost ofta utsätts för hot (http://www.dn.se/nyheter/sverige/lchf-kritik-leder-till-hot/), ett självklart helt förkastligt beteende om det stämmer. Till saken hör dock att en av de i den senare artikeln intervjuade utsatta forskarna, professor Claude Marcus, sitter i SNF:s forskningsnämnd. En annan forskare, professor Elisabet Rothenberg, får också komma till tals. Även här finns det en koppling till SNF (http://snf.ideon.se/s…/snf-50-ar/program-jubileumssymposium/).

Tillfälligheter? Kanske det. Men när människor med kopplingar till ekonomiska intressenter som de ovan angivna får fritt och enkelsidigt spelrum i media önskar i alla fall jag en mer öppen, opartisk granskning. Särskilt som min erfarenhet är att de råd de kommit med inte fungerar. Är det inte dags för forskning att få verka för att hitta sanningen, inte just för att hitta resultat som understödjer ekonomiska intressen?

Jag hoppas att jag med detta väckt ert intresse för spelet bakom forskningen och vad som händer när ekonomiska intressen lägger sig vetenskapen.

Återkom gärna om ni har några frågor.

Med vänlig hälsning,

Björn Ekengren.”

Socker har hamnat under attack under senare tid och har övertagit den hälsoskadliga roll som ”fett” fått ikläda sig sedan 50-talet. Självklart reagerar industriintressen som investerat i socker och nu ser sig ifrågasatta och hotade.

The current study showed that there were minimal and mixed impacts on MetS components and CVD risk factors of fructose containing sugars in individuals consuming the 50th percentile of population consumption levels of fructose compared to glucose. Importantly, none of these changes were clinically significant.

Min tolkning: Denna studie visade att socker med fruktos hade en obetydlig och blandad inverkan på metabola faktorer och samt risk för hjärta och kärl jämfört med glukos. Ingen av dessa förändringar var kliniskt betydelsefulla. (?)

Källa: Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease (Open Access)

Studien är välförsedd med ord och har ett antal tabeller, men saknar helt grafisk representation av dessa. Detta väcker mitt intresse då kurvor ofta är betydligt lättare att tolka än en drös siffror även om de representerar samma data.

Min hypotes: Avsaknad av grafik, där den borde lämpa sig, är ett sätt att dölja något oönskat.

Studien utgick från 366 personer varav 131 män och 235 kvinnor uppdelade i 4 grupper under 10 veckor.

This was a randomized, prospective, parallel group, double blind study to examine the effects of consuming 18% of calories from sucrose sweetened low-fat milk versus 18% of calories from HFCS sweetened low-fat milk versus 9% of calories from fructose sweetened low fat milk and 9% of calories from glucose sweetened low-fat milk.

Min tolkning: Fyra grupper, en med 18% av energin från sockersötad lågfettmjölk en annan med 18% från HFCS-sötad, en tredje med 9% från fruktossötad och en fjärde med 9% från glukossötad lågfettmjölk. (1% fett, levererad av Tetra-Pak i Denton, Texas)

Man hade utgått från detta antal med avsikten att tåla ett bortfall på 33% och ändå uppfylla krav på statistisk signifikans. 267 personer fullföljde hela studiens 10 veckor och ingick i dataredovisningen. Bortfallet var alltså 27%. Ett av kriterierna för att sorteras bort var följande:

Individuals with a known allergy to sucrose, HFCS, fructose or glucose … were also excluded.

Min tolkning: Personer med känd allergi mot sukros (vitt socker), HFCS (High Fructose Corn Syryp), fruktsocker (monosackariden fruktos) och druvsocker (monosackariden glukos) … exkluderades.

Allergisk mot socker? Tror inte det förekommer. Att vara intolerant mot t.ex. mjölksocker (laktosintolerant) är en helt annan sak. Att ordet allergisk används i detta sammanhang är inget som höjer textens trovärdighet.

Studien är hyfsat stor och kräver en hel del resurser i form av material och personal vilket drar avsevärda kostnader. Dessa betalades av Corn Refiners Association och Rippe har erhållit konsultarvoden från ConAgra Foods, PepsiCo International, Kraft Foods, Coca Cola, Pepper/Snapple Group, the Corn Refiners Association, Weight Watchers International och Kellogg’s. Rippe driver Rippe Lifestyle Institute i Florida och Massachusetts. (Lifestyle Institute? Var har jag hört något liknande på svenska, livsstilsprofessor och -mottagning?)

Rippe’s research laboratory has received unrestricted grant funding to conduct research trials and he has received consulting fees from a variety of companies, organizations, publishers or trade associations that utilize, market or publish information about fructose, high fructose corn syrup or sucrose and hence, have an ongoing interest in the metabolism and health effects of these sugars.

Nu har vi följt pengarna till källan och en kort version av studiens slutkläm finns i första citatet ovan. Låt oss nu titta titta på tabeller.

Table 1

Författarna må hävda att skillnader under experimentet var små, närmast försumbara, men när alla utfall i tabell 1 (utom andelen protein som knappt ändras alls) säger samma sak ger det ändå en viss tyngd.

  1. Under de tio veckorna ökade vikten (mätt i pound = 0,454 kg) i samtliga grupper och naturligtvis även i totalt (i medeltal 0,85 kg). På ett år skulle det kunna bli 4,25 kg.
  2. Under de tio veckorna ökade energiintaget i samtliga grupper, i medeltal från 2012 till 2255 kcal/dygn = 243 kcal eller +12%. På ett år innebär det 88700 kcal, möjligen en ökad kostnad med 10-12%, kanske mer.
  3. Kalorier från fett minskar under de tio veckorna i samtliga grupper, i medeltal från 33,7% till 27,1%, alltså en nedgång med 6,6 procentenheter, alltså -19,6%.
  4. Energin från kolhydrater ökar naturligt nog, i medeltal från 48,7% till 54%, +5,3 procentenheter alltså +10,9%.

Total sugars increased from baseline to week ten in all groups (103.3 ̆ 52.7 g vs. 183.2 ̆ 59.2 g p < 0.001) and rose more in the HFCS (90.7 ̆ 56.0 g vs. 203.0 ̆ 56.9 g) and sucrose group (102.6 ̆ 49.2 g vs. 203.4 ̆ 53.7 g) than compared to the glucose (104.2 ̆ 43.3 g vs. 160.7 ̆ 51.2 g) and fructose (113.8 ̆ 50.9 g vs. 171.6 ̆ 63.6 g) groups (p < 0.001).

Tabell 2:

Midjemåttet ökade i samtliga grupper, i genomsnitt från 80.9 ̆till 81.5 ̆med ett p < 0.001, alltså att sannolikheten för att utfallet var en tillfällighet var mindre än 0,001.

Man kan tycka att en ökning på 6 millimeter är obetydlig, men är den det? Låt oss betrakta en cirkelskiva med omkretsen 80,9 cm. Dess yta är 0,05208 m2 vilken stiger till 0,0528 m2 när omkretsen ökar till 81,5 cm. Omkretsen ökar med 7,4 promille men ytan (och därmed volymen av en cirkelskiva med viss tjocklek) ökar 1,5%.

Triglyceriderna (det enda egentliga ”blodfettet”) ökade i tre av grupperna sånär som på glucosgruppen, i medeltal steg mätvärdet från 101,56 till 111,70 mg/dl, alltså med 10%.

Tabell 3:

Med tanke på alla grupper visade vikt- och midjemåttsökning under de tio veckorna så är det helt naturligt att alla gruppers BMI ökade, i medeltal från 26,27 till 26,58 vilket innebär 0,31 enheter.

Min tolkning av denna studie:

Över 10 veckor ökade man kolhydrater (di- och monosackarider) med 10,9%, minskade fettandelen med i medeltal 19,6% medan energiintaget ökar 12%. Midjemåttet stiger statistiskt säkerställt liksom BMI. Triglycerider, fett som transporteras i blodet, stiger med 10%.

Våra celler använder ATP, adenosintrifosfat, samt i viss utsträckning ADP, (adenosindifosfat) för sin energiförsörjning. Dessa produceras i stor mängd, i storleksordningen halva till hela kroppsvikten per dygn, i mitokondrier som finns i alla celler.

Fettsyror, ketoner och glukos är några energibärare som cellerna tar upp, processar/förädlar för att sedan mata mitokondrierna. I några få av kroppens delar är det enbart glukos som fungerar, de röda blodkropparna, delar av njurarna samt en mindre del av hjärnan (uppskattningsvis 1/4 – 1/3 av dess energibehov).  I och för sig bör jag kanske lägga till att även cancerceller har ett strikt glukosbehov, då deras mitokondrier vanligen är skadade och overksamma.

Fett (triglycerid/triacylglycerol*) levereras via vattenlösliga lipoproteiner** (någon av de transportfarkoster som slarvigt kallas ”kolesterol”). En komplett triaglyceridmolekyl kan inte passera via cellmembranet in i målcellen utan måste först delas upp i sina beståndsdelar. Enzymet lipoproteinlipas (LPL) bryggar över mellan lipoproteinet och mottagarcellen och i samarbete med coenzymet apoC-II*** ”petar det in” en vattenmolekyl mellan vardera fettsyran och glycerolmolekylen som då delar sig. Detta kallas hydrolys**** där hydro syftar på vatten och lys betyder spjälka.

De avspjälkade fettsyrorna transporteras via lipidtransportörer i SLC-27-familjen in i cellen medan det vattenlösliga glycerolet sköljs iväg via blodet och återvinns i levern till glukos.

En fettsyra har, liksom korven, två ändar. Metyländen består av tre väteatomer bundna till en kolmolekyl. Det som liknar en blixt symboliserar att fettsyran fortsätter vidare. Molekylsnutten -CH3 dyker upp i många sammanhang i kroppens kemi och kan betraktas som en avslutning, den sätter punkt för en kolkedja.

Fettsyrors metylände Omega

Den andra är karboxyländen (nedan) som består av en kolmolekyl, två syre och en vätemolekyl. En av syremolekylerna samt vätet sitter samman i en hydroxylgrupp (OH). Även här har blixtsymbolen samma betydelse.

Fettsyrors karboxylände Alfa

Mellan dessa två molekylsnuttar finns ett varierande antal kolmolekyler bundna till väte. OH-gruppen är av särskilt stort intresse då den kopplar till glycerolmolekylen för att bygga en triglycerid, en komplett fettmolekyl. Snutten -COOH är en vanlig kopplingspunkt mellan diverse ämnen och när en sammankoppling görs, en förestring, frigörs en vattenmolekyl, H2O. Se illustrationen nedan.

Kortkedjiga fettsyror kan, med hjälp av bärarproteinet albumin, transporteras direkt av blodet och kommer därför omgående att föras från tarmpaketet via blodet och ut i vävnader utan vidare processande. Detta gör kortkedjigt kokosfett till en oerhört snabbverkande energiråvara.

Ketoner bildas i levern med fett/fettsyror som utgångspunkt. De är vattenlösliga, transporteras i blodet och kan nå alla kroppens celler. De passerar utan vidare blod-hjärnbarriären och försörjer vid behov större delen av hjärnan med energi. Då ketoner har mindre andel syreatomer än glukos för samma mängd energi är dess verkningsgrad betydligt större (25-28-30%) än glukos vid drift av mitokondrierna och lämnar mindre mängd ”avfall” (koldioxid) efter sig. Ketoner gör sannolikt att de som fastar efter några dagar känner sig upprymda, euforiska och ”fulla av energi”.

Fettsyror som levereras in i en fettcell byggs åter upp till triglycerider/triacylglycerol, kompletta fettmolekyler. Till detta krävs en (nybildad) glycerolmolekyl, byggd av glukos. Dessa kommer in i fettcellen via insulinoberoende GLUT1 (Glukostransportör 1) eller, om blodsockret är förhöjt, insulinaktiverat GLUT4. När alla komponenter finns på plats binds tre fettsyror, via sina OH-grupper, till glycerolet genom förestring.

Glycerol - fettsyror

Bilden: Atomerna inne i boxarna kommer dels från glycerolet till vänster och dels från fettsyrornas OH-grupper. De kombineras vid förestringen till tre vattenmolekyler som avges, vilket minskar utrymmesbehovet inne i fettcellen.

Insulin aktiverar LPL samtidigt som det gör större mängder glukos tillgängligt för att bilda glycerol inne i cellen. Insulin skyndar därför på förestring/fettbildning och detta bör vara bekant för diabetiker typ 1 som får fettkuddar där man injicerat alltför ofta. Det är även skäl till att diabetiker typ 2, sockersjuka, i 80% av fallen drar på sig en avsevärd övervikt under det fleråriga inledningsskedet av sjukdomsutvecklingen innan diagnosen.

När fettmolekylen utnyttjas sker det omvända men med andra aktörer. Inte heller nu kan en komplett triglycerid/triacylglycerol tränga ut och om så skulle ske så är ändå en fettmolekyl inget som blodet kan transportera. Därför träder ett annat enzym, Hormonkänsligt lipas (HSL), in i handlingen inne i fettcellen. HSL aktiveras av hormonerna adrenalinnoradrenalin och glukagon och inleder hydrolysen**** av fettmolekylen till separata fettsyror och glycerol. När HSL avskiljt den första fettsyran fullföljs hydrolysen i snabb följd av diglyceridlipas och monoglyceridlipas. De två senare enzymerna är långt snabbare och tillgången till HSL bestämmer därför reaktionshastigheten.

Insulin deaktiverar HSL och utgör därför ett effektivt hinder för att utnyttja kroppens fettväv som energikälla.

Frigjorda fettsyror passerar ut genom cellmembranet och glycerolen sköljs som vanligt iväg via blodet till levern för återvinning. Fettsyrorna hämtas upp av blodets transportproteiner, albumin. Detta kit kallas märkligt nog för fria fettsyror, men i vilket fall transporteras de runt i blodet till dess de stöter på en cell som behöver dem.

Beskrivningen är långt ifrån fullständig.


*) En fettmolekyl kallas ofta triglycerid men även triacylglycerol som är en kemiskt korrektare benämning. Tri står för tre, acyl för fettsyra och glycerol för just glycerol.

**) Dessa kan vara stora kylomikroner, IDL (som är delvis tömda kylomikroner) eller någon av LDL-fraktionerna.

***) apoC-II utgör en del av lipoproteinhöljet och fungerar som ett medlevererat specialverktyg, ungefär som IKEA:s sexkantnyckel.

****) Hydrolys innebär att ett enzym spjälkar molekyler genom att sätta in en vattenmolekyl i ”skarven”. Det omvända förloppet kallas förestring.