Arkiv för kategori ‘endocytos’

LDL är ett lipoprotein som börjar som VLDL i levern för att sedan gradvis krympa till IDL och vidare. LDL tillhörde de 50% av IDL som i slutändan av sin utveckling bara behöll kännetecknet ApoB-100 och därför slipper förbi leverns utrensningsmekanism. Se föregående inlägg.

Varje LDL transporterar 3000-6000 triglycerider (fettmolekyler), obundna kolesterolmolekyler, kolesterylestrar samt fosfolipider som ingår i dess membran (se föregående delar för ytterligare information). Vid brist på LDL faller ansvaret för framställning av kolesterol på de enskilda cellerna, vilket de inte alltid klarar av. Celler som använder LDL (med ApoB-100) som energileverantör kan inte identifiera och hämta sitt behov från kylomikroner med ApoB-48 som sitt “ID”.

I varje LDL finns bland andra fetter även linoleate, innehållande omega-6-fettsyran linolsyra. Fleromättade fettsyror har två eller flera dubbelbindningar i sina kolkedjor, alla känsliga för angrepp från fria radikaler, de oxideras lätt.

Celler har LDL-receptorer som går upp till cellmembranet och flyttar sig till område med urgröpningar (clathrin-coated pits) på cellmembranets utsida. Där stannar den och ”fiskar” efter passerande lipoproteiner med ApoB-100 där den kan hämta mer. När den ”får napp” sluter sig urgröpningen, dras i form av en vesikel in i cellen (endocytos) där den öppnar sig och lämnar av sin fångst. Därefter kan LDL-receptorn återgå till cellytan och upprepa processen. Om deras insats inte längre krävs går de till cellens lysosomer för återvinning av sina beståndsdelar. De flesta av våra celler kan dessutom själva framställ kolesterol för eget bruk.

När koncentrationen av kolesterol inne i cellen är tillräcklig deaktiveras enzymet HMG-CoA reduktas vilket dämpar den interna kolesterolproduktionen. På så sätt avlastas cellen från en del av arbetet om man äter mat som innehåller kolesterol. Samtidigt minskar nyproduktionen av LDL-receptorer och eventuellt överskott av kolesterol förestras med fettsyror till en kolesterylestrar, bättre anpassade för lagring.

Statiner är HMG-CoA-reduktashämmare som verkar generellt i kroppen, inte bara i de celler där behovet av nytt kolesterol är tillräckligt.

LDL finns av flera subtyper varav A beskrivs som ”stora och fluffiga” (large and fluffy) B som ”små och täta” (small and dense). B-typen (pattern B) utpekas som den skadliga varianten då deras storlek gör att de lättare fastnar i kärlväggarna. I själva verket finns 7 urskiljbara subtyper där de två av de tidiga i förloppet är A-typen och de övriga 5 tillhör B-typen. Bilden nedan redovisar inte subtyperna 6 och 7.

Analyser av labbvärden har visat att höga VLDL (det lipoprotein som levern tillverkar och använder för att exportera sitt triglyceridbidrag) är associerade med mer LDLsd (small dense), B-typen.

Vid vanliga blodprov mäter man totalkolesterol, HDL (nämnts tidigare men ännu inte berört) samt triglycerider, TG (fettmolekyler) i lipoproteinet VLDL. Ur dessa värden gör man uppskattningar ”mellan tummen och pekfingret” enligt Friedewalds formel:

LDL (alla 7 fraktioner tillsammans)  (ungefär) TotalkolesterolHDL – 0,45 * TG där alla värden anges i mmol/L.

Formeln är på inga sätt exakt och förutsätter en föregående nattfasta på mer än 12 timmar för att TG-värdet i huvudsak ska återspegla fett som för ögonblicket levereras ut från levern. Dessutom förutsätter den antaganden om genomsnittsinnehållet i de olika lipoproteinerna, något som kan variera rejält. Men metoden är förhållandevis billig och tjänar väl att skrämmas med.

En betydligt bättre variant är att räkna antalet ApoB-100 (från LDL) och ApoA1 (från HDL). Kvoten ApoB-100/ApoA1 (Apo-kvoten) bör vara under 0,9 för män och under 0,8 för kvinnor för att betraktas som OK, lägre anses bättre. Vill din läkare att du ska ta kolesterolsänkande mediciner så be åtminstone först om en Apo-kvot som stöd för åsikten.

Nästa inlägg innehåller mer om LDL.


Kylomikroner transporterar fett och kolesterol från tarmen via lymfa och blod ut i kroppen. Där töms de gradvis på sitt innehåll och så länge markören ApoC2 finns kvar kan den gång på gång passera levern. När den är tömd på sitt triglyceridinnehåll (fett) och skrumpnat ihop kommer lipoproteinet HDL (som vi skall beröra senare) att avlägsna ApoC2 varefter levern plockar in kylomikronresten för destruktion.

Triglycerider (fett) som levern bildar ur energiöverskott kan inte exporteras via blodet och måste därför få hjälp. För det ändamålet tillverkar levern ett nytt lipoprotein, VLDL (Very Low Density Lipoprotein) [1]. Det har stora likheter med kylomikronen, men även avgörande skillnader. Membranet består som hos alla lipoproteiner av fosfolipider men är avsevärt mindre och med andra inbäddade Apo-lipoproteiner, ApoB-100, ApoC1 och ApoE. Under den vidare färden i blodet får den ytterligare tillskott av ApoE samt ApoC2 från HDL.

Detta visar schematiskt det avsnittet behandlar. Den plommonfärgade blobban nere till höger är levern.​
Detta visar schematiskt det avsnittet behandlar. Den plommonfärgade blobban nere till höger är levern.

Vår kropp har ständigt behov av energi men behovet varierar över dygnet och råvarufördelningen från mat och redan lagrad energi ännu mer. När kolhydraterna samt fett från maten i huvudsak uttömts kommer energin från leverns produktion av fetter samt glykogenförråd i muskler och lever. Beskrivningen är avsiktligt förenklad för att runda delar av den komplicerade helheten.

Levern exporterar energi i form av triglycerider (fett) som den producerar av energiöverskott i blodet. Det förpackas i lipoproteinet VLDL. Till det kommer (molekylen) kolesterol samt kolesterylestrar. [2] När du lämnar blod på ett labb kommer med stor sannolikhet en uppgift om Triglycerider (TG) som alltså är ett mått på leverns produktion och export av fett ur energiöverskott från maten.

Under färden genom blodet passerar de fett-, hjärt– och muskelceller med receptorer (mottagare) som känner igen ApoB-100, kanske även de övriga Apo. Om cellerna har behov av innehållet i VLDL hakar de samman. Enzymet LPL (Lipoprotein Lipas) frigör fettsyror i VLDL som förs över till mottagarcellen för vidare användning.

VLDL töms gradvis och passerande HDL plockar till slut bort kännetecknet ApoC2. Det som återstår betraktas som ytterligare en typ av lipoprotein, IDL (Intermediate-density Lipoprotein). IDL har ett mindre mängd triglycerider medan infrastrukturen i övrigt är förhållandevis lika, dess densitet (täthet) ökar något och fördelningen av Apoproteiner speglar deras nya öde.

Ungefär hälften behåller ApoB-100 samt ApoE. När de passerar levern känner dess receptorer igen den unika kombinationen och endocyterar [3] dem, tar in dem för destruktion. Den andra halvan behåller enbart ApoB-100. De innehåller fortfarande triglycerider men andelen kolesterol är nu mer än 50%, dags för ett nytt namnbyte som återspeglar nya egenskaper. Det ‘nya’ lipoproteinets densitet är fortfarande förhållandevis låg på grund av sitt innehåll av ”lätta” triglycerider och kallas nu LDL, Low Density Lipoprotein.


[1] https://en.wikipedia.org/wiki/Very_low-density_lipoprotein

[2] Kolesterylester är en kolesterolmolekyl som förestrats (förenats) med en fettsyra.

[3] Endocytos innebär att cellmembranet sluter sig runt det som ska endocyteras, avsnörs och bildar en vesikel för vidare transport inne i cellen. https://sv.wikipedia.org/wiki/Endocytos

Fett från vår mat följer till stor del en oväntad väg från upptaget i tarmen till blodomloppet. Kylomikronen (eng. Chylomicron) kan på goda grunder betraktas som det första lipoproteinet i vårt matupptag.

Chylomikronen är det allra största lipoproteinet, specialiserat för att transportera triglycerider/triacylglycerol (fettmolekyler).
Chylomikronen är det allra största lipoproteinet, specialiserat för att transportera triglycerider/triacylglycerol (fettmolekyler).

Fett emulgeras (finfördelas) av gallan till ytterst små droppar. På så sätt kan de följa det vattendominerade tarminnehållet, dessutom ökar ytan mångfalt mot tarmväggens enzymer. I tunntarmen tar vi upp matens fetter, de fettlösliga vitaminerna A, D, E och K, kolesterol från mat samt galla som nu gjort sitt jobb.

På ”insidan” av tarmepitelet byggs kylomikroner där fetterna och vitaminerna omsluts med ett membran av fosfolipider och får ett för kylomikroner unikt kännetecken, apolipoproteinet ApoB-48 [1] som visar dess ursprung, innehåll och mål. Ungefär 85 – 90% är fett, resten är till ungefär lika delar protein, kolesterol för att ge stadga till membranet av fosfolipider samt en mindre mängd kolesterylestrar (kolesterol bundet till en fettsyra) som åker med inne i kylomikronen vars storlek kan vara 75-1200 nM (nanometer = 0,000 001 millimeter)

När kylomikronen är komplett flyttas den över till lymfsystemet där den i lugn takt följer lymfan till dess de töms ut i blodomloppet. Där åker de med och får ApoE och ApoC2 från ett annat lipoprotein, HDL [2], som vi återkommer till senare. Kylomikronen lämnar gradvis av sitt innehåll till celler vars receptorer reagerar på ApoB-48 medan ApoC2 aktiverar enzymet lipoproteinlipas (LPL) på ytan av mottagarceller. Till dessa hör fettväv, hjärt– och skelettmuskler där dess innehåll av fetter spjälkas av enzymet lipoproteinlipas till två fettsyror och en monoglycerid (en fettsyra där glycerolmolekylen hänger kvar). I detta strippade skick kan de flyttas över till mottagarcellerna. Under överföringen kan en del av dessa fettsyror bindas till blodets transportprotein albumin, i den formen kallas de fria fettsyror. När huvuddelen av fettinnehållet är borta återlämnar kylomikronan ApoC2 till HDL.

Det som återstår är en kylomikronrest (chylomicron remnant), innehållet är i stort sett tömt och storleken nere på 30-50 nM. Skillnaden i volym är enorm, 1:10 till 1:8000. När den når levern kommer kombinationen av ApoB-48 och ApoE att trigga motsvarande receptorer, den sugs upp i levern genom endocytos och bryts ner av dess lysosomer. Den “matinducerade” kylomikronen har fullgjort sitt värv.

I korthet: Kylomikroner och kylomikronrester ingår i ett yttre kretslopp (exogenous pathway) som transporterar fetter och kolesterol med ursprung i tarmen. Den första delen av sin existens tillbringar kylomikronen i lymfan för att sedan övergå till blodomloppet. Den rätt långsamma passagen genom lymfsystemet kan vara ägnad att fördela matens energi över en längre tid. Efter en måltid är koncentrationen hög för att 12-15 timmar senare vara nära noll. De triglycerider (fett) som mäts i blodprov efter en nattfasta kommer därför uteslutande från leverns produktion från energiöverskott som inte förbrukats.


[1] ApoB finns i två varianter, ApoB-100 och ApoB-48. Den senare utgör 48% av den förra. De tillkommande procenten dyker upp i ett senare skede.

[2] https://matfrisk.com/2020/11/21/11-hdl-high-density-lipoprotein/

Vid det här laget vet du att lipoproteiner är molekyler som transporterar lipider, fettliknande ämnen, i kroppens vattenrika miljö, lymfa och blod. De bär olika markörer, en kombination av avsändare, innehållsdeklaration och mottagare. Dessa markörer har namn som apoB48, apoB100 och apoA1 men det finns fler.

Lipoproteiner med apoB48 bildas i tunntarmen och transporterar lite större lipider (främst långkedjiga fetter och vitaminer) via lymfan och vidare ut i blodet. De nybildade kallas kylomikroner (chylomicron), är mycket stora och till brädden fyllda med fett som de levererar till celler som visar receptorer, mottagare, som reagerar på apoB48. Allt eftersom krymper de när de levererar ut fettet och blir kylomikronrester (chylomicron remnants) som tas upp och återvinns av levern. Efter 10-12 timmar tar vanligen denna lipidtransport paus till dess du äter igen.

Levern producerar fett ur energiöverskott från passerande kolhydrater och fett. I bästa fall exporteraras allt  via nyproducerat VLDL, Very Low Density Lipoprotein. Det är stort, fettrikt och därmed mycket ”lätt”. Nybildat VLDL bär kännetecknet apoB* men även andra. Under resan delar VLDL ut sitt innehåll och blir IDL, Intermediate Density Protein, men behåller hela tiden sin ”fettflagga” apoB.

När IDL krympt ner till cirka 25-35 nanometer försvinner alla ”apor” utom apoB och i fortsättningen är det fraktioner av något olika storlek av LDL, LowDensity Lipoprotein. De är fortfarande fett-transportörer om än i liten skala. De första två (kanske tre) fraktionerna av LDL dominerar hos friska och återvinns problemfritt av levern. I bästa fall gör ”vården” viss teoretisk skillnad på de två första och resten, Large Buoyant LDL och Small Dense LDL, men räkna inte med att det ska märkas i ett labbprotokoll.

Blodet är en ”farlig” miljö att vistas i, det är syrerikt och innehåller enkla sockerarter** (monosackarider) som gärna ”klibbar fast”*** vid vadhelst det stöter på, t.ex LDL. Levern ”tappar intresse” för modifierat LDL medan makrofager gör det de är avsedda att göra, tar hand om ”olämpligheter” som cirkulerar, såväl oxiderat som glykerat LDL.

Makrofager som föräter sig på oxiderat och glykerat LDL ger samlingar av skumceller. Vid det här laget vet du att det inte är bra, om inte så repetera!


*) Egentligen bör det heta apoB100, men då det fortsättningsvis inte finns någon förväxlingsrisk skriver man enbart apoB. Det finns stora likheter mellan de två varianterna av apoB, den som pryder kylomikroner är 48% av den längre apoB100 som byggs i levern!

**) Monosackariderna är glukos, fruktos och galaktos. Vanligt vitt socker (sukros) är glukos + fruktos, laktos (mjölksocker) är glukos + galaktos. Stärkelse är långa kedjor av glukos. Fruktos är uppåt 10 gånger mer benäget att försockra sin omgivning! Det är fruktos som ger ”naturlig sötma”.

***) Detta kallas glykering (försockring) när det sker slumpmässigt, glykosylering om enzymer styr hur det sker. Detta sker hos alla, men i högre grad hos diabetiker, där mäter man graden av försockring av röda blodkroppar, måttet anges i mmol/L och kallas i labbrapporter HbA1c.

Det läkare och andra slarvigt kallar ”kolesterol” omfattar en mängd olika ”farkoster” som gör det möjligt att transportera fettartade ämnen i kroppens vattendominerade miljö, t.ex. lymfa och blod. De består av membran av fosfolipider* och kallas lipoproteiner. I denna artikel gäller det Low Density Lipoprotein (LDL), slarvigt betecknat som ”det onda kolesterolet”.

I vårdsammanhang mäter man aldrig LDL direkt, det blir istället en uppskattning baserad på några besläktade värden och förutsätter att man inte ätit under 10-15 timmar dessförinnan. Självklart märker man då inte av att LDL finns av minst 5, kanske 7 fraktioner (stadier av ”avveckling”) där de två första är nödvändiga och önskvärda medan de övriga 3-5 fraktionerna ger ökande grad av problem.

The low-density lipoprotein (LDL) oxidation hypothesis gained traction during the 1980s because it was noted that in general, native unoxidised LDL does not cause foam cell formation. In other words, LDL had to become oxidised first in order for atherosclerosis to develop.

Min tolkning: Hypotesen om oxiderat LDL formades under åttiotalet när man noterade att ”färskt” LDL inte förorsakade skumceller. Annorlunda uttryckt, LDL måste oxideras för att atheroskleros, åderförfettning, ska inträffa.

KällaOmega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis– James J DiNicolantonio, James H O’Keefe

Skumceller (foam cells) är ansamlingar av ”överviktiga/feta” makrofager** som konsumerat (försökt eliminera!) för mycket oxLDL (oxiderat LDL) och stupat på sin post. Engelska Wikipedia 

Moreover, oxLDL was found to be higher in patients with CAD compared with normal patients and oxLDL was able to better identify patients at an elevated risk of heart disease. (Referenser 7, 8 och 9 nedan)

Min tolkning: Oxiderat LDL var högre hos patienter med CAD (coronary artery disease, kransskärlssjukdom) och kunde bättre identifiera de med förhöjd risk för hjärtsjukdom.

  • De vanliga kliniska metoder som används idag bortser från att LDL finns i flera fraktionen varav två dominerar stort bland friska men får allvarlig negativ konkurrens av de övriga när det kommer till utveckling av CAD.
  • Vad kan vi göra för att driva på produktionen av oxLDL? (Märk att jag formulerar problemställningen ”åtabak”!)

Fortsättning följer…


*) En fosfolipid är till 2/3 fett och 1/3 ett protein. När de ligger intill varandra där de bildas kommer de att bilda krökta membran där proteinsidan vänds utåt mot den vattenrika miljön. Detta bildar lipoproteiner som fylls med varierande innehåll beroende på var de bildas. Till detta fogas även yttre kännetecken på ursprung och destination.

**Makrofag betyder ”storätare” med uppgift är att ”äta upp” t.ex. bakterier men de ger sig även i kast med oxLDL, något som kan bli dem övermäktig.

7. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–94.

8. Holvoet P, Stassen JM, Van Cleemput J, et al. Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease. Arterioscler Thromb Vasc Biol 1998;18:100–7.

9. Salonen JT, Ylä-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–7.

Det är nu ett tag sedan jag skrev om kolloidalt silver. Dessa marknadsförs som vattenreningspreparat och domineras till mellan 70 – 90%* av positivt laddade silverjoner, Ag+, resten kan vara kluster av metalliskt silver, vanligen utan redovisning av storlek.** En förespråkare för kolloidalt silver har länkat till en artikel som ”…utan tvekan (är) det bästa jag hittills stött på om KS (kolloidalt silver).” En stor fördel är att man då inte behöver käbbla om artikeln är cherry-picked eller irrelevant för diskussionen.

Citat: ”Här verkar det vara en seriös artikel som handlar om möjliga fysiologiska reaktioner. Inlagring i cellmembran är tydligen en erkänd mekanism.”

Källahttps://link.springer.com/article/10.1186/2228-5326-2-32

och

Citat: ”Nu har jag själv läst hela pappret jag länkade till och det är utan tvekan det bästa jag hittills stött på om KS. Författarna verkar till skillnad mot ”kategoriska förnekare” inom det medicinska etablissemanget veta vad de talar om med sina uppenbara kemiska, fysikaliska och fysiologiska insikter. Artikeln tilltalar mig själv som naturvetare och förespråkare för alternativmedicin.”

Mitt förslag är att även du tar hem hela artikeln, dels för innehåll, dels för den omfattande referensförteckningen (88 st). Förespråkare för silveranvändning har ofta ett lösligt förhållande till vetenskapliga referenser och föredrar länkningar till silverförsäljare istället.

Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity.

Min tolkning: Trots att nanopartiklar av silver används närmast obegränsat (rampantly) i medicinska och biologiska sammanhang har de nackdelar i form av nanotoxicitet (giftverkan som följer av partiklars ytterst begränsade storlek).

Silvrets antimikrobiella egenskaper har varit kända i åtminstone 2000 år men användningen ökade på 1800-talet och framåt.

It is a well-known fact that silver ions and silver-based compounds are highly toxic to microorganisms which include 16 major species of bacteria [1,2].

Min tolkning: Det är välkänt att silverjoner och silverföreningar är kraftigt giftigt för mikroorganismer vilket inkluderar 16 betydelsefulla arter (species) av bakterier [1,2].

Det råder delade meningar om hur silver fungerar.

Though silver nanoparticles find use in many antibacterial applications, the action of this metal on microbes is not fully known. It has been hypothesized that silver nanoparticles can cause cell lysis or inhibit cell transduction.

Min tolkning: Trots att nanopartiklar används i många antibakteriella sammanhang är dess verkan på mikrober inte fullt känd. Hypoteser menar att silvret kan förorsaka cellnedbrytning (lysis) eller hindrar signalering mellan celler.

Nanosilver används i många sammanhang, t.ex. textilier, elektronik, optik, bakteriedödare och medicinska behandlingar. Silver kan ingå i tandfyllnadsmaterial, beläggningar av medicinska instrument, i vattenfilter, luftrenare, kuddar, respiratorer, strumpor, torkdukar (wet wipes), rengöringsmedel, tvål, shampoo, tandkrämer, tvättmaskiner samt andra konsumentprodukter inklusive sådana för sårbehandling. Uppräkningen är tagen ur artikeln och gäller inte nödvändigtvis svenska förhållanden.

Silver nanoparticles have the ability to anchor to the bacterial cell wall and subsequently penetrate it, thereby causing structural changes in the cell membrane like the permeability of the cell membrane and death of the cell. There is formation of ‘pits’ on the cell surface, and there is accumulation of the nanoparticles on the cell surface [3].

Min tolkning: Nanosilver kan förankra till bakteriers cellmembran, förändra genomsläppligheten döda bakterien. Det bildas ”gropar” där nanosilver ansamlas [3].

Det man syftar på i sista meningen är sannolikt en variant av pinocytos (celler ”dricker”) som finns beskrivet här: https://matfrisk.com/2016/10/12/hur-ater-och-dricker-celler/

The formation of free radicals by the silver nanoparticles may be considered to be another mechanism by which the cells die.

Min tolkning: Silvernanopartiklar antas bilda fria radikaler som dödar celler.

”Alla” har säkert hört att fria radikaler är skadliga och att man bör motverka dem med antioxidanter. Verkligheten är betydligt mer komplex än så, men det kan vara en fördel att veta vad som är gemensamt för fria radikaler.

  • En fri radikal är en atom eller molekyl som av någon anledning saknar en elektron. Den är alltså positivt laddad och dras till vadhelst elektroner i omgivningen som ”sitter lite löst”. En fri radikal är alltså en simpel elektrontjuv och en antioxidant är en elektrondonator.

There have been electron spin resonance spectroscopy studies that suggested that there is formation of free radicals by the silver nanoparticles when in contact with the bacteria, and these free radicals have the ability to damage the cell membrane and make it porous which can ultimately lead to cell death [4,5].

Min tolkning: Avancerade försök visar möjligheten (suggests) att silvernanopartiklar bildar fria radikaler (den positivt laddade silverjonen Ag+) som, i kontakt med cellmembran, förändrar genomsläppligheten*** vilket kan döda cellen.

Fortsättning följer.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?,  Silver – del 3, utspädningseffekten,  Silver – del 4, Vad är en kolloid?,  Silver – del 5, Är det ”farligt”?,  Silver – del 6, passage genom hud,  Silver – del 7, metalloproteiner? Silver – del 8, vad är oligodynamisk effekt? ,  Silver – del 9, några av silverjonens egenskaper,  Silver – del 10 – en potent virusdödare?,  Silver – del 11, begreppsförvirring?,  Silver – del 12, Harmlöst eller farligt?,  Silver – del 13, silvernanopartiklar i blod in vivoSilver – del 14, Gramnegativa och grampositiva bakterier Silver – del 15 – Vad är ppm och mol?Silver – del 16 – Varför dör inte alla bakterier i tarmarna? Silver – del 17 – Vad kan hända med silverjoner i blodet?Silver – del 18 – silvernitrat och jonerSilver – del 19 – Bröstcancer i provrör


*) Det finns många tillverkare/leverantörer, naturligtvis med egna beskrivningar av sina produkter, därav variation i  sammansättningen.

**) En vanlig åsikt är att kolloidala silverpartiklar ligger i storleksintervallet 1 – 100 nanometer (1 nM = 10-9M = 0,000000001M). Antalet silveratomer i ett sådant kluster varierar med en faktor 1003 = 1 000 000 mellan dessa ytterligheter, givet att deras inbördes proportioner är lika.

***) Cellmembran är inte täta som plastpåsar utan ”organiserat genomsläppliga”. Fria radikaler kan ställa till stor oreda genom att åstadkomma ”revor”.

Celler är mycket komplicerade strukturer som omges av ett membran, dubbla lager av fosfolipider. En fosfolipid är i stort sett byggd som en triglycerid (fett) med en av de tre fettsyrorna utbytt mot en fosforgrupp.

phospholipid_tvanbrussel

  • Fettsyrorna vänder sig mot varandra och fosforgrupperna utåt.
  • Fosforgrupperna är polära och umgås problemfritt med vatten, avgörande då både cellens inre och omgivning är vattenrik.
  • Fettsyrorna i membranets inre hindrar polära och fosfogrupperna opolära molekyler (lipider, ex. fetter) att passera.
  • Några små molekyler som O2 (syre) och CO2 (koldioxid) tar sig rakt igenom.

Cellmembranet är, i detta skick, som en ”påse” som släpper igenom några gaser men i huvudsak är tätt mot t.ex. vatten och fetter. Inte mycket att ha, eller hur?

Ursprungligen antog man att H2(vatten) passerar via osmos, men Peter Agre, en av Nobelpristagarna i kemi 2003, kunde visa förekomsten av transportproteinet aquaporin som väsentligt ökar kapaciteten.

Utöver dessa finns många andra transportörer som går igenom cellmembranet, en av dem gäller kaliumRoderick MacKinnon delade Nobelpriset i kemi 2003 för sitt arbete om dessa. Nervsignaler och muskelaktivitet är beroende av dessa kaliumkanaler.

Andra specialiserade transportproteiner är olika varianter av GLUT, glukostransportörer, varav GLUT4 reagerar på hormonet insulin.

All passage genom membranet sker inte via specialiserade transportörer, det skulle krävas alltför många för att täcka behovet. Istället finns varianter som sammanfattas under begreppet endocytos.

500px-endocytosis_types_sv-svg

  • Fagocytos innebär att, när cellen kommer i kontakt med ”något lämpligt”, så viker sig cellmembranet runt detta och bildar en bubbla, fagosom, som lämnar cellmembranet på insidan och förenar sig med andra delar av cellens inre som behandlar det efter sitt innehåll. Det är så vita blodkroppar angriper bakterier och dödar dem. Fagocytos brukar beskrivas som att cellen ”äter”. Det gäller inte enbart bakterier utan fungerar även som en städare som tar hand om och återvinner diverse ”skräp”.
  • Vid pinocytos finns inbuktningar i cellmembranet, då och då sluter de sig med innehåll och allt. Detta sker utan särskilt urval, vadhelst som finns i vesikeln följer med. Detta beskrivs som att cellen ”dricker”.
  • Receptorisk endocytos är uttalat selektiv då speciella receptorer fäster vid rätt molekyler och startar bildningen av den bubbla som drar in, avskiljs och därmed levererar molekylen ifråga till cellen.

Motsatsen till de olika varianterna av endocytos är exocytos där förloppet löper från cellens inre och går utåt. Exempel på detta är när en cell har producerat ett protein och exporterar det för vidare befordran. Insulin och andra hormoner är exempel på detta.

  • Pinocytos kan generera problem då den fungerar ospecifikt, den tar in vätska från omgivningen utan att på något känt sätt filtrera bort sådant som är olämpligt. Förmodligen är det en av de processer som gör att närapå allt i vår omgivning kan komma in i vår kropp även om det är meningslöst eller till och med skadar oss.

Om beskrivningen är fel eller överförenklad bortom räddning så hoppas jag att eventuella läsare påpekar och rättar så snart som möjligt i kommentarer eller via mail, adressen finns uppe till vänster.