Arkiv för kategori ‘triacylglycerol’

HDL beskrivs ofta som ”det goda kolesterolet”, något som delvis är sant. Det är ett lipoprotein i ett kretslopp som hanterar transport av lipider mellan andra lipoproteiner (ex. VLDL, IDL och olika fraktioner av LDL) samt från olika delar av kroppen och främst till levern.

Fördelning av lipoproteiner i två olika blodprov, analyserade med Lipoprint-metoden, HDL är det ensamma längst till höger
Fördelning av lipoproteiner i två olika blodprov, analyserade med Lipoprint-metoden, HDL är det ensamma längst till höger [1]

Kolesterol är en molekyl med en mängd centrala funktioner i kroppen, däremot finns den inte i ”goda” eller ”dåliga” varianter.

Litteraturen är påtagligt vag när det gäller var och hur HDL bildas, de få gånger det sker finns syftningar till levern. Vanligen startar beskrivningarna först när de redan finns i blodet.

HDL känneteckans av ringa storlek, hög densitet samt av de apoproteiner som sitter på membranets yta. Uppsättningen är nästan samma som hos kylomikroner i det ”yttre” lipidkretsloppet.

Apoproteiner kan betraktas som etiketter som beskriver ursprung, innehållsförteckning och mål. Vissa av dem finns kvar länge medan andra byts ut eller avlägsnas under färden i blodet.

HDL har ett rörformigt proteinkomplex, CETP (Cholesteryl Ester Transfer Protein), som kan ansluta till andra lipoproteiner det stöter samman med och utbyter delar av sina innehåll. CETP fungerar ungefär som ett sugrör i ett glas med vätska.

CETP kan flytta över triglycerider (fettmolekyler) såväl som kolesterylestrar. På så sätt deltar HDL i den gradvisa omvandlingen av VLDL till IDL och slutligen LDL.

HDL kan betraktas som utjämnare av lipidresurser, den hämtar överskott där de finns och överlämnar dit de passar bättre. Den kan till och med plocka upp redan avlagrade ämnen på kärlväggar och på så sätt motverka plackbildning. Förr eller senare hamnar HDL i levern där den med återstående innehåll återvinns.

Återkommande erfarenheter av LCHF som livsstil är att den sänker TG (triglycerider från VLDL i det ”inre” kretsloppet av fett från levern) i samverkan med högre HDL. Dessa två brukar innebära att LDL (Low Density Lipoprotein) är ”stora och fluffiga” och tjänar som en betydande transportör av fetter för cellernas energibehov. Den ”stora och fluffiga” varianten av LDL (Pattern A) är begärlig för kroppen då de förbrukas ur blodomloppet inom ett par dygn.

Om å andra sidan TG är högt och HDL lågt ökar mängden av de ”små och täta” fraktionerna av LDL, Pattern B. Storleken gör att de passar in och lätt fastnar i kärlväggarnas ojämnheter. Dessutom har de en livslängd i blodomloppet på cirka 5 dygn. Detta gör att de under lång tid utsätts för oxidation från fria radikaler samt glykering på grund av blodets innehåll av glukos och fruktos. Oxiderade och glykerade små täta LDL attraherar makrofager och utgör merparten av det ”skadliga kolesterolet”.

Höga HDL-värden anses vara en fördelaktig egenskap och kan bero på de inte förbrukas i stor utsträckning snarare än att produktionen av HDL är hög. Ur min synvinkel förbrukas mer HDL ju mer dess ”städtjänster” krävs då den återvinns i levern!


[1] Lipoprint http://www.lipoprint.eu/files/file/EN%20Lipoprint%20presentation(1).pdf

Appendix

Apoproteiner sitter i olika kombinatioiner på utsidan av lipoproteiner och visar deras ursprung, innehåll och mål. https://matfrisk.com/2020/11/09/05-apolipoproteiner/

CETP (cholesteryl ester transfer protein) är ett rörformigt proteinkomplex, som finns på HDL, ansluter mellan lipoproteiner som utbyter delar av sina innehåll. CETP fungerar ungefär som ett sugrör i ett glas med vätska. https://en.wikipedia.org/wiki/Cholesterylester_transfer_protein

Densitet (täthet) är ett sätt att beskriva ett ämnes massa per volymenhet. Flytande vatten vid badtemperatur har densiteten 1 gram/milliliter medan is har densiteten 0,92 g/ml. Fetters densitet varierar men ligger runt 0,9 g/ml. Lipoproteiner densitet varierar från <0.95 (kylomikron) ända till 1.210 (den tätaste av 10 HDL-fraktioner).

Fosfolipider är till 2/3 en fettmolekyl med en vattenlöslig fosfordel. Tillsammans bygger de livsviktiga membran. Cellmembran består av dubbla lager fosfolipider medan lipoproteiner som ständigt omsätts bara har ett enkelt. https://matfrisk.com/2020/11/06/2-lipider-fosfolipider-och-lipoproteiner/ samt https://matfrisk.com/2020/11/07/03-fosfolipider-och-membran/

Kolesterol är en lipid där ena delen av molekylen är uppbyggd av fyra sammanfogade kolringar och därför mycket rigid/stel/stabil och används som reglering av cellmembranens stabilitet. Dessa kolringar återkommer i identisk eller modifierad form hos en mängd andra ämnen som testosteron, östrogen och kortisol. Det utgör även ett förstadium i den egna D-vitaminproduktionen. https://matfrisk.com/2020/11/05/01-kolesterol-vad-ar-det/

Kolesterolestrar är en lite mer långsiktig lagringsform som består av en kolesterolmolekyl vars OH-ände förenas med motsvarande OH i fettsyras karboxylände. Processen när de förenas kallas förestring och avger då en vattenmolekyl. Motsatsen, när man petar in en vattenmolekyl så att ämnet delas i två, kallas hydrolysering.

Lipider är fettsyror, fetter och fettliknande ämnen som har begränsad eller ingen förmåga att lösas i vatten. https://matfrisk.com/2020/11/06/2-lipider-fosfolipider-och-lipoproteiner/

Lipoproteiner är transportfarkoster som gör det möjligt för lipider (fetter och fettliknande ämnen) att färdas i blodet. HDL tillhör lipoproteiner som byggs av enkelväggiga membran av fosfolipider. Dessa viker sig samman till slutna rum med den feta sidan inåt och fosforsidan utåt. På det sättet kan lipoproteiner färdas i blodet. https://matfrisk.com/2020/11/08/4-med-enkla-membran-lipoproteiner/

Makrofager ingår i det ospecifika immunförsvaret. Ordet betyder ”storätare”, och makrofager fungerar genom att äta upp främmande celler såsom bakterier, en process som kallas för fagocytos. https://sv.wikipedia.org/wiki/Makrofag

Triglycerid/triacylglycerol Tre fettsyror (sinsemellan lika eller olika) kopplas samman med en glycerolmolekyl till en fettmolekyl. Det finns även di– och monoglycerider. Du ser dem ofta i innehållsförteckningar på fettsnåla produkter där man försöker binda avsevärda mängder vatten. https://matfrisk.com/2017/03/26/fett-5-bygg-fett-av-fettsyror-och-glycerol/


Kylomikroner transporterar fett och kolesterol från tarmen via lymfa och blod ut i kroppen. Där töms de gradvis på sitt innehåll och så länge markören ApoC2 finns kvar kan den gång på gång passera levern. När den är tömd på sitt triglyceridinnehåll (fett) och skrumpnat ihop kommer lipoproteinet HDL (som vi skall beröra senare) att avlägsna ApoC2 varefter levern plockar in kylomikronresten för destruktion.

Triglycerider (fett) som levern bildar ur energiöverskott kan inte exporteras via blodet och måste därför få hjälp. För det ändamålet tillverkar levern ett nytt lipoprotein, VLDL (Very Low Density Lipoprotein) [1]. Det har stora likheter med kylomikronen, men även avgörande skillnader. Membranet består som hos alla lipoproteiner av fosfolipider men är avsevärt mindre och med andra inbäddade Apo-lipoproteiner, ApoB-100, ApoC1 och ApoE. Under den vidare färden i blodet får den ytterligare tillskott av ApoE samt ApoC2 från HDL.

Detta visar schematiskt det avsnittet behandlar. Den plommonfärgade blobban nere till höger är levern.​
Detta visar schematiskt det avsnittet behandlar. Den plommonfärgade blobban nere till höger är levern.

Vår kropp har ständigt behov av energi men behovet varierar över dygnet och råvarufördelningen från mat och redan lagrad energi ännu mer. När kolhydraterna samt fett från maten i huvudsak uttömts kommer energin från leverns produktion av fetter samt glykogenförråd i muskler och lever. Beskrivningen är avsiktligt förenklad för att runda delar av den komplicerade helheten.

Levern exporterar energi i form av triglycerider (fett) som den producerar av energiöverskott i blodet. Det förpackas i lipoproteinet VLDL. Till det kommer (molekylen) kolesterol samt kolesterylestrar. [2] När du lämnar blod på ett labb kommer med stor sannolikhet en uppgift om Triglycerider (TG) som alltså är ett mått på leverns produktion och export av fett ur energiöverskott från maten.

Under färden genom blodet passerar de fett-, hjärt– och muskelceller med receptorer (mottagare) som känner igen ApoB-100, kanske även de övriga Apo. Om cellerna har behov av innehållet i VLDL hakar de samman. Enzymet LPL (Lipoprotein Lipas) frigör fettsyror i VLDL som förs över till mottagarcellen för vidare användning.

VLDL töms gradvis och passerande HDL plockar till slut bort kännetecknet ApoC2. Det som återstår betraktas som ytterligare en typ av lipoprotein, IDL (Intermediate-density Lipoprotein). IDL har ett mindre mängd triglycerider medan infrastrukturen i övrigt är förhållandevis lika, dess densitet (täthet) ökar något och fördelningen av Apoproteiner speglar deras nya öde.

Ungefär hälften behåller ApoB-100 samt ApoE. När de passerar levern känner dess receptorer igen den unika kombinationen och endocyterar [3] dem, tar in dem för destruktion. Den andra halvan behåller enbart ApoB-100. De innehåller fortfarande triglycerider men andelen kolesterol är nu mer än 50%, dags för ett nytt namnbyte som återspeglar nya egenskaper. Det ‘nya’ lipoproteinets densitet är fortfarande förhållandevis låg på grund av sitt innehåll av ”lätta” triglycerider och kallas nu LDL, Low Density Lipoprotein.


[1] https://en.wikipedia.org/wiki/Very_low-density_lipoprotein

[2] Kolesterylester är en kolesterolmolekyl som förestrats (förenats) med en fettsyra.

[3] Endocytos innebär att cellmembranet sluter sig runt det som ska endocyteras, avsnörs och bildar en vesikel för vidare transport inne i cellen. https://sv.wikipedia.org/wiki/Endocytos

Inlägget är faktaspäckat och förutsätter en tålmodig och nördig läsare. Jag har skrivit om detta ämne många gånger tidigare, varje gång med en lite annan vinkling. Denna gång är temat ”kolesterol” och långtidsblodsocker. För att förklara sambanden dem emellan krävs en del förkunskaper.

  • Om du saknar förklaringar till ord och begrepp jag använder så prova att Googla på det tillsammans med matfrisk, chansen är god att du finner åtminstone något. Om inte så påminn mig i en kommentar.

1) Kolhydrater i maten består av stärkelse, di– och monosackarider där glukos är den energibärare vi kan använda. Det är vattenlösligt och transporteras utan hjälp i blodet.

2) Protein som inte används som ren aminosyrakälla bryts ner till energi i form av cirka 4/5 glukos och 1/5 ketoner (se mer nedan och i *).

3) Fett i mat eller från egna fettlager transporteras via blodet på flera sätt beroende på vilka förutsättningar som råder för ögonblicket, ordningsföljden är därför ingen ranking av dess betydelse.

  • Som vattenlösligt acetoacetat (AcAc), aceton och beta-hydroxybutyrat (BHB) som grupp kallas de ketoner.*
  • Som triglycerider** i kylomikroner, VLDL, IDL, LDL och i viss utsträckning även HDL***.
  • Som kolesterolestrar, fettsyror bundna till molekylen kolesterol. De färdas på samma sätt som triglycerider i lipoproteiner (se föregående punkt).
  • Som ”fria fettsyror” (Non esterified fatty acids, NEFA) som lotsas runt i blodet via det universella bärarproteinet albumin.
  • Korta fettsyror är i sig tillräckligt lösliga i vatten för att kunna följa blodet utan hjälp.

”Vården” brukar vara mycket fascinerade av det man kallar ”totalkolesterol” samt LDL. I kliniska sammanhang är det enda lipoprotein man faktiskt mäter HDL. De övriga är uppskattningar man får via Friedewalds formel****.

LDL (Low Density Lipoprotein) är inte en sorts molekyl utan summan av upp till 7 delfraktioner varav den första och andra är nödvändiga och problemfria. Om LDL blir kvar utöver normala 2-2,5 dagar i blodet, särskilt om blodsockret är förhöjt, kan blodsockret kleta fast vid den ”adresslapp” som gör att levern via LDL-receptorer känner igen och plockar bort den ur blodomloppet när den fullgjort sin uppgift. Den ”adresslappen” heter ApoB 100 och finns i endast i ett exemplar per LDL, ett faktum som är ytterst betydelsefullt.

  • De två första LDL-fraktionerna klassas som Large and buoyant (stora och lätta) medan de övriga 5 är Small and dense (små och täta).
  • Ett annat sätt att beskriva dem är ”Pattern A” respektive ”Pattern B”. Ordet pattern kan tolkas som ”mönster”.
  • De stora och lätta i Pattern A är önskvärda medan små och täta i Pattern B ställer till problem. Skillnaden i storlek är liten, däremot är densiteten (tätheten, därmed även fördelningen av innehållet) betydelsefull.

Diabetiker med dålig blodsockerkontroll får ett förhöjt HbA1c, det som slarvigt kallas ”långtidsblodsocker”, ett mått på glykering (”försockring”). Det sker när monosackariderna glukos (blodsocker) och fruktos***** klibbar fast vid proteiner.

De första två LDL-fraktionerna transporterar framförallt fetter och förbrukas effektivt av de som ”bränner fett”. Om du istället satsar på kolhydrater som energikälla kan blodsockret bli högt samtidigt som dina celler inte ”har tid och plats” för att använda fett. Det kan leda till att LDL blir kvar för länge i blodomloppet och hinner glykeras. Då leverns LDL-receptorer inte känner igen dem avvisas de och cirkulerar i blodet under flera dagar. Under den tiden utsätts de dessutom för oxidering vilket ytterligare sänker deras användbarhet, beroende på hur illa det är nedklassas de till fraktionerna 3-7. Här träder makrofager (”storätare”) in i handlingen, de är en mångfacetterad grupp celler som arbetar inom immunförsvaret.

Both M1 and M2 macrophages play a role in promotion of atherosclerosis. M1 macrophages promote atherosclerosis” by inflammation. M2 macrophages can remove cholesterol from blood vessels, but when the cholesterol is oxidized, the M2 macrophages become apoptotic foam cells contributing to the atheromatous plaque of atherosclerosis. Källa: Wikipedia

Min tolkning: Två varianter av makrofager har roller i kärlproblem, men på olika sätt. M2 kan avlägsna lipoproteiner (Märk att man här använder det slarviga uttrycket ”kolesterol”!) ur blodkärlen men om de är oxiderade kan M2 ”föräta sig”, dö på kuppen och blir skumceller som utgör huvuddelen av plack.

I korthet, några viktiga tumregler:

  • Undvik mat som driver upp ditt blodsocker, välj t.ex. LCHF, gärna i kombination med korttidsfasta som 16:8 eller 5:2.
  • Låt dig inte skrämmas om ”blodfetter” utan att ta reda på vad de kan innebära för just dig.
  • Om du vill ”bränna fett” måste du ge din kropp chansen att göra det. Det fungerar inte att äta ”superfoods” i kombination med diverse kosttillskott. Det enda som säkert blir lättare av det är din plånbok!
  • Förutom alkohol är fett och glukos dominerande energikällor från maten. (Detta är inte helt fullständigt, men bra nära. Har du idèer, kommentera så får vi jämföra.)
  • Vill du ha stöd, hjälp och tips från aktiva LCHF-are så gå med i facebookgrupperna Smarta Diabetiker och Smarta Diabetikers Recept. Tillsammans har de för närvarande över 24000 medlemmar.

Det finns en variant med höga LDL-nivåer som heter familjär hyperkolesterolemi. Som namnet antyder är det en genetisk åkomma som kännetecknas av att levern har underskott på eller saknar LDL-receptorer och därför inte tar upp lipoproteinet ur blodet. Även annat komplicerar, t.ex. koaguleringsfaktorer.

*) Acetoacetat och aceton är kemiskt sett ketoner medan beta-hydroxybutyrat inte är det utan snarare påminner den korta fettsyran smörsyra där en av väteatomerna är ersatt med en OH-grupp. Detta gör den ännu mer vattenlöslig och kan passera blod-hjärnbarriären och försörja större delen av hjärnans energibehov (>75-80E%).

**) En triglycerid (egentligen triacylglycerol) är det vi kallar fett. Den byggs av tre fettsyror bundna till en glycerolmolekyl.

***) Kylomikroner, VLDL, IDLLDL (sammanlagt 7 fraktioner) samt HDL (två fraktioner) är lipoproteiner, relativt enkla transportfarkoster för engångsbruk som klarar att transporterar fetter och fettliknande ämnen (lipider) i blodet.

****) Friedewalds formel/ekvation: Uppskattningen lyder: LDL = TotalkolesterolHDL – (Triglycerider/2.2) där alla mått är i mmol/L. Som alla uppskattningar bygger den på generella antaganden och felar när den används utanför sin ”sweet spot”. För personer med låga fastetriglycerider (TG) ger den Iranska formeln korrektare värden.

– The Friedewald equation: LDL = TC – HDL – TG / 2.17 (mmol/L)

– The Iranian study method: LDL = TC / 1.19 + TG / 0.81 – HDL / 1.1 – 0.98 (mmol/L)

Källa: Is Friedewald formula a good estimation for low density lipoprotein level in Iranian population? 

*****) Vanligt vitt socker, sukros, består av en glukos- och en fruktosmolekyl bundna till varann. Fruktosen ger sötman, glukosen smakar mest bara trist. Det vet de insulinbehandlade diabetiker som tagit för mycket insulin i förhållande till behovet och akutkompenserar med Dextrosol för att inte bli farligt ”låga”.

En viktig aspekt är att fruktos är 7-10 gånger mer benäget att glykera proteiner, dock ska det ses i relation till att levern tar hand om nästan all fruktos redan vid första passagen och gör om det till fett om det redan är fullt i glykogenlagret.

Fett anses ge 9 kcal/gram, proteiner 4 kcal/gram liksom kolhydrater. Ibland dyker det upp någon som, helt relevant, påpekar att alkohol ger 7 kcal/gram.

Jag har många gånger påpekat att det inte finns någon unik ”proteinenergi” utan vid överskott av dess byggstenar aminosyror kommer dessa att strippas på sitt kväveinnehåll och det som återstår bildar glukos och/eller AcAc (acetoacetat), ett av tre ämnen som benämns ketoner).

Finns då en unik ”alkoholenergi”?

Börja gärna med mitt tidigare inlägg Varför är fett energirikare än kolhydrater? från februari 2017. Där finns en mening som jag förväntade mig skulle bli ifrågasatt, men icke. I korthet; där jämfördes energiinnehållet i glukos med en fettsyra (hexansyra) med samma antal kolatomer, 6 st. Ett fett byggs av tre fettsyror sammanlänkade med en glycerolmolekyl, därav kemisters beteckning triglycerid. Huvuddelen av energiinnehållet i fett kommer från fettsyrorna, bidraget från glycerolen kan ofta försummas då den återvinns som glukos i levern men måste nyproduceras så snart ett fett ska byggas upp igen så snart det hamnar i en fettmolekyl.

Review of Medical Physiology av William F. Ganong, 20de upplagan, finns ytterligare uppgifter vi behöver.

  • 1 mol hexansyra (116 gram) ger 44 mol ATP*
  • 1 mol glukos (180 gram) ger 38 mol ATP

100 gram glukos ger alltså ungefär 21,1 mol ATP medan samma massa av hexansyra presterar inte mindre än 37,9 mol ATP.

Det är mot den avslutande meningen jag förväntade mig protester. I ”vanliga” sammanhang anses fett ge 9 kcal/gram medan kolhydrater ger 4 kcal/gram vilket ger proportionerna 9/4 = 2.25. Gör du samma beräkning med hexansyra och glukos blir det 37.9/21.1 cirka 1.79! Varför så lite? Bortsett från att det dessutom krävs lite glycerol för att göra fett av hexansyran?

En fettsyra består av två ändar och det i mitten. Karboxyländen, –COOH, är energigles då den innehåller ett par syremolekyler redan från början. Resten, metyländen -CH3samt de mellanliggande grupperna av -CH2 är den energirika delen. Det finns två tumregler som påverkar energiinnehållet i ett fett/fettsyra:

  1. Ju längre kolkedja dess högre energidensitet och tvärtom.
  2. Ju fler dubbelbindningar i kolkedjan dess lägre energidensitet. Vi berör inte detta här.

Detta är skälet varför den korta hexansyran med 6 kol ”bara” innehåller 79% mer energi än samma vikt av glukos alltså mindre än 8 kcal/gram för motsvarande fett.

Men rubriken gällde ju alkohol?

När alkohol bryts ner i levern bildas ättiksyra som enbart består av den karboxyl- och metylände jag nyss presenterade, inget däremellan.

  • Ättika/ättiksyra är den kortaste fettsyran som naturligt finns i kroppen!

Naturligt? Jo, så är det, vi har en liten egenproduktion av alkohol, ungefär 3 gram per dygn. För att ta hand om detta har vi ett fungerande system att eliminera det för att inte på sikt bli förgiftade. Så enligt min mening finns ingen unik ”alkoholenergi”, den kommer ur nedbrytning av en extremkort och relativt energifattig fettsyra.

Märkvärdigare än så är det inte. Fast mycket mer detaljerat.


* ) ATP, adenosintrifosfat, är kroppens grundläggande energivaluta. Vi har mikroskopiskt små mängder ”på lager”, bara enstaka kcal men det nyskapas ständigt och en tämligen ordinär dygnsproduktion är jämförbar med kroppsvikten! Det förefaller absurt mycket, men förklaringen är att den egentliga energin bärs i trifosfat-delen medan majoriteten av massan är bäraren, adenosin-delen. Se det som en liten komponent som hanteras av en stor industrirobot.

Industrially-produced trans fats are contained in hardened vegetable fats, such as margarine and ghee, and are often present in snack food, baked foods, and fried foods. Manufacturers  often use them as they have a longer shelf life than other fats. But healthier alternatives can be used that would not affect taste or cost of food.

Min tolkning: Industriellt framställda transfetter finns i härdade vegetabiliska fetter såsom margarin och ghee och finns ofta i mellanmålsprodukter (snack food), bakad och friterad mat. Tillverkare använder dem ofta då de har längre hållbarhet än andra fetter men hälsosammare alternativ kan användas som inte påverkar smak eller kostnad.

Källa: World Health Organisation

Industriframställda transfetter/transfettsyror är direkt olämpliga och bör snarast fasas ut, något Livsmedelsverket inte har stake nog att genomdriva. Men WHO:s argument i citatet ovan är långt ifrån klockrena. Du som har kunskaper om transfett, smör och ghee har säkert redan förstått vad min kritik gäller och kan lugnt surfa vidare.

  • Fetter byggs av en sammanhållande glycerolmolekyl med tre kopplade fettsyror, sinsemellan lika eller olika. En fettmolekyl kallas därför triglycerid alternativt triacylglycerol.
  • Fettsyror är kolkedjor som kan vara mättade, enkel- eller fleromättade. Detta innebär att kolkedjorna är ”fullbestyckade” med väteatomer alternativt saknar ett eller flera par av dem.
  • En mättad fettsyra är rak men lätt flexibel.
  • I naturligt förekommande fettsyror kommer de saknade väteatomparen från samma sida (cis-) av kolkedjan. Kolkedjan böjer sig och fettet som helhet blir mjukare eller till och med lättflytande trots att kolkedjan kan vara mycket lång.
  • Om de saknade väteatomparen kommer från motsatta sidor (trans-) av kolkedjan blir resultatet en ”knick” snarare än en böj. Den dubbelbindning som uppstår gör också att en transfettsyra dras samman och blir något kortare än en mättad fettsyra med samma antal kolatomer.
  • Det finns anledning att misstänka att framför allt industriellt framställda transfetter är negativa för hälsan.
  • Under många år brukade Livsmedelsverket bunta samman enkel- och fleromättade transfettsyror med ett av sina hatobjekt, mättade fetter, till ”transfetter och mättade fetter”. Bland annat LCHF-are påpekade många gånger denna uppenbart felaktiga inställning och numera förekommer det sällan eller aldrig. Kan ju också bero på att tidigare industrikopplingar har tappat inflytande inom SLV.
  • Det finns ”naturliga transfetter” i mjölk från idisslare men de tycks inte påverka hälsan negativt. Idisslare har en bakterieflora som skapar dessa transfetter.

Efter publiceringen har jag fått anledning anledning att komplettera, något som finns mot slutet.

Mycket som händer i världen har över- eller underskott på resurser i samverkan med ekonomiska och/eller militära incitament, så även hitte-på-smörsurrogatet margarin.

Margarine is an imitation butter spread used for flavoring, baking, and cooking. Hippolyte Mège-Mouriès created it in France in 1869 when responding to a challenge by Emperor Napoleon III to create a butter substitute from beef tallow for the armed forces and lower classes. First named oleomargarine from Latin for oleum (beef fat) and Greek for margarite (pearl indicating luster), it was later named margarine. Källa: Wikipedia

Märk väl att den ursprungliga målgruppen var ”militären och lägre klasser i befolkningen”. Med tiden fann man att billiga vegetabiliska fetter, till och med oljor, kunde behandlas, härdas, så att de blev fastare och påminde om smör i konsistensen.

Härdningen kallas av kemister för hydrogenering (hydro syftar på väte) vilket innebär att man under högt tryck, värme och med nickel som katalysator tillför vätgas. Detta tvingar in väteatomer i kolkedjorna och eliminerar en del av dubbelbindningarna. Fettblandningen som helhet får färre omättnader, blir mer mättad. Denna ändring är oproblematisk då det saknar betydelse hur ett mättat fett uppkommer.

De ursprungliga dubbelbindningarna, som var för sig är svagare än en enkelbindning, blir instabila vid den höga temperaturen och kolkedjorna vrider sig slumpmässigt. När tillverkaren är nöjd och sänker temperaturen kommer en del av dessa vridna dubbelbindningar att ”fastna” i transkonfiguration vilket också bidrar till fettblandningen blir fastare men även ger de oönskade transfettsyrorna.

Industrially-produced trans fats are contained in hardened vegetable fats, such as margarine and ghee…” är ett fel i WHO:s argumentering då ghee är ett smörfettskoncentrat utan sitt ursprungliga vatten- och proteininnehåll. Det krävs ingen avancerad metod, bara att värma smör till dess det smälter och börjar skikta sig i en fettfraktion som flyter på protein och vatten. Ta vara på fettet så har du ghee med oerhört lång hållbarhet, även i värme. Detta är en vanlig metod i varma och fuktiga klimat som t.ex. i Indien. Transfett i ghee beror uteslutande på de naturligt förekommande transfetterna i komjölken.

Att produkter med industriframställda transfetter anses ha längre hållbarhet än de med äkta smör beror sannolikt på att smöret innehåller proteiner som begränsar hållbarheten, inte att margarinets fett är hållbarare.

hälsosammare alternativ kan användas som inte påverkar smak eller kostnad.” är ytterligare en övertolkning från WHO. Till att börja med är påståendet ”hälsosammare alternativ” starkt ifrågasatt. Att ”kostnaden inte påverkas” är sant såtillvida att hitte-på-fetter numera måste prissättas lågt för att hitta köpare. Intressant är att dessa fettsurrogat i grunden är både smak- och färglösa jämfört med smör. Hur skulle margarinförsäljningen påverkas om tillsatser av färg– och/eller smaktillsatser begränsades?


Efter publiceringen har jag fått anledning anledning att komplettera med följande:

  • Vid härdning av en enkel- eller fleromättad fettsyra kan/kommer en del av de tidigare cis-bindningarna att slumpmässigt vrida sig 180 grader, en eller flera gånger. Sker det ett udda antal gånger blir det en trans-bindning, vid ingen eller jämnt antal förblir det en cis-bindning.
  • Enkelbindningar mellan mättade kol har större bindningsenergi än enskilda dubbelbindning och man höjer knappast processtemperaturen så högt att de påverkas. Om så ändå sker gör det måttligt stor skillnad.
  • Dubbelbindningar byter inte plats i kolkedjan i samband med härdningen. Cis- och trans- anger uteslutande att kolkedjan böjer sig resp. det blir en ”knick” på en i huvudsak rak del av kedjan.
  • Dubbelbindningar ”nybildas” inte under härdningen, till det krävs enzymer, desaturaser. De arbetar vid måttliga temperaturer, långt från härdningens hetta.
  • Med anledning av att SLV under många år buntade samman ”mättade fetter och trans-fetter” vill jag framhålla att en delvis härdad fettsyra fortfarande är en enkel- eller fleromättad fettsyra alldeles oavsett om den eller de kvarvarande dubbelbindningarna är av cis- (”normal”) eller trans-konfiguration.
  • Om en fettsyra är ”fullhärdad” är alla dubbelbindningar ersatta med enkelbindningar och den resulterande fettsyran är helt identisk med en ”naturlig” fettsyra med samma antal kol.