Inlägg märkta ‘enkelomättade fettsyror’

Kommer du att beröra betydelsen av fettsyrornas längd?

Använder du begrepp som mättade fetter och fleromättade fetter utan att egentligen veta något om bakgrunden? Utom att de mättade är ”farliga” och de fleromättade är ”nyttiga”, förstås. Detta är en länksamling till tidigare blogginlägg på MatFrisk där fett och fettsyror spelar en central roll.

Fett #1: Fettsyror, en introduktion
Oavsett om du är positivt eller negativt inställd till fett som del i mat eller kropp så är det en fördel att känna till den kemiska bakgrunden. Om du tar till dig eller själv använder påståenden som ”undvik mättade fetter, de är farliga” och ”ät mer fleromättade fetter, de är jättenyttiga” så är jag övertygad om att du kan vidga dina perspektiv avsevärt. Det sker inte i en handvändning, därför blir det flera inlägg.

Fett #2: Raka och krökta fettsyror
Dietister och andra med konventionella kunskaper om mat förfasar sig ofta och gärna över att LCHF-are ”utesluter en hel näringsgrupp” och därför äter ”ensidigt och näringsfattigt.” Till skillnad från kolhydrater som huvudsakligen bara finns i tre varianter där glukos är den enda som kroppen direkt kan utnyttja är fettsyror mycket varierade i sin sammansättning, för att inte tala om fetter och ämnen de bildar i kroppen.

Fett #3: Fettsyrors längd och omega-begreppet
Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I #1 visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära, delen av molekylen medan karboxylgruppen är polär och ”umgås” väl med vatten. Hos korta och i någon mån medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

Fett #5: Bygg fett av fettsyror och glycerol
I inlägg 1# – #4 har jag berättat rätt detaljerat om fettsyror. Logiskt sett borde detta vara inlägg #3,5 för att förklara hur fetter byggs upp av sina beståndsdelar och koppla samman dem till fetter.

Fett #4: Hur du bygger din egen fettväv
Fettväv byggs av tre fettsyror sammanlänkade med glycerol till triglycerider lagrade i en stor droppe i fettceller. Dessa är specialiserade och har t.ex. mycket få mitokondrier som används för att skapa ATP, kroppens grundläggande energivaluta. Cellkärnan med sitt innehåll av DNA är förvisat ut i periferin (se bilden till vänster). Genom sitt spartanska innehåll är fettväv normalt är nästan vit. Resten av fettväven utgörs i huvudsak av blodkärl och blod. Detta gör att energitätheten i fettväv är ungefär 7500 kcal/kg, klart lägre än i rent fett.

Ett uns av fettkemi i anslutning till muskel- och fettceller
Våra celler använder ATP, adenosintrifosfat, samt i viss utsträckning ADP, (adenosindifosfat) för sin energiförsörjning. Dessa produceras i stor mängd, i storleksordningen halva till hela kroppsvikten per dygn, i mitokondrier som finns i alla celler. Fettsyror, ketoner och glukos är några energibärare som cellerna tar upp, processar/förädlar för att sedan mata mitokondrierna. I några få av kroppens celltyper är det enbart glukos som fungerar, de röda blodkropparna, delar av njurarna samt en mindre del av hjärnan (uppskattningsvis 1/4 – 1/3 av dess energibehov). Även cancerceller har ett strikt glukosbehov, då deras mitokondrier vanligen är skadade och overksamma. Det senare är särskilt olyckligt då startsignal för apoptos, programmerad celldestruktion, utgår från fungerande mitokondrier.

Nytta av korta fettsyror i tjocktarmen, del 1
Jag har hittat en studie som fascinerar mig. Den är intressant och, som jag ser det, logisk och faktarik. Den kan inte kallas lättillgänglig, man bör vara en nörd och ha gott om tid för att uppskatta den. För att försöka göra innehållet någorlunda tillgängligt planerar jag att dela upp innehållet i flera blogginlägg, hur många får vi se.

Korta fettsyror i tjocktarmen, del 2
The development of the intestinal ecosystem is crucial for many gastrointestinal functions and body health. The intestinal ecosystem essentially comprises the epithelium, immune cells, enteric neurons, intestinal microflora, and nutrients.

Min tolkning: Utvecklingen av tarmarnas ekosystem är avgörande för mag- och tarmkanalens funktion och vår hälsa. Ekosystemet utgörs av dess avgränsningar (epithelium), immunceller, nervsystem, mikroflora och näringsämnen.

Upptag av korta fettsyror, del 3
SCFA (Kortkedjioga fettsyror) tas upp, till skillnad från de flesta andra näringsämnen, i både tunn- och tjocktarm. Provrörsstudier (in vitro) har visat att koleratoxin som förorsakar akuta diarréer motverkas genom uppvätskning i kombination med resistent stärkelse. Det senare är ett råmaterial som tjocktarmens bakterier använder för att producera små men betydelsefulla mängder av n-butyrat (smörsyra, en SCFA).

Butyrat och ulcerös colit, del 4
Ulcerös colit är en inflammatorisk sjukdom i tjocktarmen. Som namnet anger förorsakar den (blödande) sår som dels hindrar tjocktarmens funktion, dels ger blodförluster som kan vara mycket allvarliga. UC uppträder i skov med varierande frekvens och varaktighet och med rätt skötsel kan man leva med den under lång tid utan att den blir livshotande. Även här är SCFA involverat.

Är det stor skillnad mellan glukos och en kort fettsyra?
Dietister och andra nutritionsexperter är mycket tydliga när man tar avstånd från fett som huvudsaklig näringskälla, särskilt när det kommer till mättade fetter med animaliskt ursprung. Ibland tror jag att de inte är nämnvärt bekanta med grundläggande kemi. Som illustration har jag tagit en rak variant av monosackariden glukos samt en mättad fettsyra med samma antal kol.

Varför är fett energirikare än kolhydrater?
”Alla vet” att fett innehåller 9 och kolhydrater 4 kcal/gram. Men hur många vet vad det beror på? Båda består enbart av grundämnena kol (C), väte (H) och syre (O) men i olika proportioner och strukturell uppbyggnad.

Annonser

Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I första delen av serien visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära*, delen av molekylen medan karboxylgruppen är polär* och ”umgås” väl med vatten. Hos korta och medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

När fett nått förbi magsäcken/tolvfingertarmen är det emulgerat som ytterst små fettdroppar av gallan. Ungefär som diskmedel löser upp det feta i disken. När fettdropparna når tarmslemhinnan bearbetas de av lipaser, enzymer som delar upp fettmolekylen i beståndsdelar så att de kan passera in genom cellagret. Jag återkommer till det i ett senare inlägg.

  • De långa fettsyrorna återkombineras till fettmolekyler och packas i vattenlösliga transportfarkoster, kylomikroner, som går in i lymfsystemet. Då det inte finns någon ”motor” som driver på går det långsamt, men förr eller senare hamnar de i blodet för vidare befordran.
  • De korta och medellånga lotsas direkt till blodet och når snabbt olika slutförbrukare som t.ex. muskel– och leverceller. De är utmärkta som ”snabb energi” och lagras inte i fettväv.

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror

SCFA, Short Chain Fatty Acid, kortkedjiga fettsyror

Jag syftar på de med sammanlagt 2 till 5 kolatomer men indelningar som denna är inte självklara och olika åsikter finns. Effekten av den feta, hydrofoba* kolkedjan i förhållande till den hydrofila* karboxyländen avgör hur lätt den ”umgås” med vatten. Bland SCFA är det den hydrofila karboxyländen som med god marginal bestämmer.

  • Bakterier i tjocktarmen klarar att bryta ner fibrer och vissa andra andra kolhydrater som resistent stärkelse, RS. Ur dessa producerar de 4 korta mättade fettsyror, ättiksyra (2 kol, 60% av mängden), propansyra (3 kol, 25%), butansyra (smörsyra, 4 kol, 15%) samt en spårmängd av valeriansyra (5 kol). Dessa försörjer tarmen med energi, vilket förutsätter att fettsyrorna kan färdas i den vattenrika och därför polära* miljö som tarminnehållet utgör.

Om man äter/dricker SCFA utgör de en snabb energikälla om än inte helt oproblematisk. Ättiksyran, t.ex., måste spädas rejält för att bli drickbar och en varning är på plats då den fräter på tandemaljen. Skölj därför noga, men dröj med tandborstningen så du inte sliter på tandemaljen. Äppelcidervinäger är ett rimligt alternativ att prova för den nyfikne.

Som framgår av namnet är smör en källa (eng: butter) till butansyra. Här är risken för syraattacker på tänderna obefintlig då den sura änden av fettsyran är ”upphakad” av en glycerolmolekyl så länge det är ett fett.

MCFA, Medium Chain Fatty Acid, medellånga fettsyror

Detta är fettsyror med 6-10/12 kolatomer. Fortfarande dominerar karboxyländens förmåga att umgås med vatten, de passerar in genom tunntarmens epitel direkt till blodet och vidare till celler som har behov av dem. Kokosolja är ett utmärkt exempel.

Övriga fettsyror

Allt eftersom den ”feta” delen av fettsyran (metyländen + kolkedjan) börjar dominera försvinner möjligheten att på egen hand följa blodet och en långsammare omväg tar över logistiken. Repetera gärna början av inlägget om du inte minns varför.

Omega-begreppet

Metyländen betraktas av kemister som slutet av en fettsyra och kallas därför omegaänden. (Omega är den sista bokstaven i det grekiska alfabetet). I nutritionssammanhang har den en avgörande betydelse och vissa fettsyror beskrivs och får sina namn med utgångspunkt från omega-änden.

Lägg märke till minustecknet mellan omega och 3, 6 eller andra siffror som kan finnas! Det är inte ett bindestreck utan anger att man räknar bakåt i kolkedjan, med utgångspunkt från kolet i metyländen. Ibland skriver man n-3 eller ω-3

Omega-3, n-3, ω-3

De har sin första dubbelbindning mellan kolatom 3 och 4, räknat från metylgruppen, det finns vanligen fler med två enkelbindningar emellan. Ju fler dubbelbindningar desto mer kröker sig fettsyran mot en spiralform om den är riktigt lång. Då omega-3-fettsyrors krökningar börjar tidigt i kedjan finns det, för en given kolkedjelängd, plats för flera vilket ger fettsyran en spiralform och väldigt rinniga oljor med låg smälttemperatur. Växelvarma djur i mycket kall miljö, t.ex. fiskar i Norra Ishavet, har särskilt mycket omega-3-fettsyror för att alls kunna röra sig i det kalla vattnet vid temperaturer vid och under noll.

Omega-6, n-6, ω-6

Dessa har sin första dubbelbindning mellan kolatom 6 och 7, fler finns vanligen med två enkelbindningar emellan. Vid lika antal kol har omega-6-fettsyror en större andel rak kolkedja än omega-3 vilket gör dem något mindre rinniga. Vegetabiliska oljor från varma miljöer har en större andel omega-6 då de växter de kommer från annars skulle sloka svårt i värmen.

Essentiella fettsyror

Vi kan själva tillverka mättade fettsyror upp till 16-18 kol (uppgifterna varierar mellan olika källor) och ur dessa även enkelomättade med hjälp av enzymer som heter desaturaser**. Vi har däremot inte desaturaser som kan skapa dubbelbindningar så nära metyländen som vid kol 6 eller tidigare. Dessa måste vi därför få från det vi äter och kallas därför essentiella, livsnödvändiga. Det är omega-3-fettsyran alfa-linolensyra och omega-6-fettsyran linolsyra, råmaterial som kroppen bygger vidare på.


*) Hydro– syftar på vatten, –fil och –fob har betydelser som sannolikt alla förstår. Hydrofil innebär ungefär ”vattenälskande” och hydrofob ”vattenskyende”. Med korrekt terminologi: hydrofila ämnen löser sig i polära och hydrofoba i opolära lösningsmedel. Vatten och därmed blod är polära lösningsmedel.

**) Desaturaser plockar bort två väteatomer, en från vardera näraliggande kol i kedjan. De är specialiserade och kan till exempel räkna. Mer om detta i ett senare inlägg.

Du har hört det många gånger, fria radikaler skadar din hälsa. Men vad är det och hur skadar dom? Wikipedia beskriver så här:

”En fri radikal eller bara radikal är en atom eller molekyl som har oparade elektroner i det yttersta elektronskalet.”

Free-radicals-oxygen

Den som kan kemi har säkert inga problem med detta, det är glasklart, men för resten av oss, vad betyder det? Med lite förenkling kan beskrivningen bli så här:

En fri radikal är en ofullständig molekyl med ett elektronunderskott!

Den fria radikalen är hela tiden på jakt för att ersätta bristen. Om den kommer i kontakt med en annan molekyl som inte ”håller i” sina elektroner tillräckligt hårt så stjäl den helt enkelt det den kan få tag i. Och nu är det ombytta roller, molekylen som nyss slarvade med sina tillgångar har hux flux blivit en fri radikal och börjar i sin tur gå på rövarstråt.

På det sättet kan elektronbristen vandra vidare tusentals steg till dess den inte hittar något vidare ”offer” eller stöter på en antioxidant som permanent sätter stopp för det kemiska elektronröveriet. Till dessa hör C– och E-vitamin.

Av och till stannar röveriet upp i någon viktig fett- eller aminosyra och kan då skada den cell som den tillhör. Om det sker i alltför stor utsträckning så blir det en vävnadsskada. I klartext:

En fri radikal är en simpel elektrontjuv. Svårare än så är det inte 

Enkel– och fleromättade fetter har lättåtkomliga elektroner att röva, de finns i de dubbla bindningarna mellan atomerna i kolkedjan. Mättade fettsyror/fetter skyddar sina elektroner effektivare och har därför betydligt större hållbarhet. 

Men finns det något positivt med dessa fria radikaler? Jo, det gör det och den egenskapen utnyttjar immunförsvaret! Beroende på sin ringa storlek är bakterier känsliga för de fria radikalernas elektrontjuveri. Om immunsystemet bombarderar med ”radikal ammunition” så dör de. Normalt sett är vår urin praktiskt taget steril vilket beror på ett ständigt bombardemang av fria radikaler.

Varifrån kommer ”ofullständiga molekyler”?

Där kan nog finnas mängder av svar men inget ämne kan byggas upp från sina beståndsdelar på oändligt kort tid och till dess den sista elektronen är på plats så har vi en fri radikal på jakt. Så länge du andas kommer syret att producera miljarder fria radikaler per sekund. Energirika fotoner i UV-ljus från solen eller solarier, har också kapacitet att bryta upp bindningar mellan atomer och peta loss elektroner.

  • Den som solar onödigt mycket får stora mängder fria radikaler i huden som förstör bindvävsproteinet kollagen som då tappar sin elasticitet och ger rynkig hud.
  • En annan följd av fria radikalers inverkan på kollagen är skörbjugg vilken motverkas genom antioxidanten C-vitamin som motverkar vidarespridning av fria radikaler.
  • Tobaksrök har enorma mängder laddade partiklar och är därmed en betydande producent av fria radikaler. Du märker det genom att tobaksdoften fastnar i ”allt” som inte är elektriskt ledande, tapeter, mattor, gardiner. Diskbänken av rostfritt stål slipper undan sånär som på de partiklar som helt enkelt dalar ner och är lätta att torka bort. Ett sätt att sanera en rökares bostad (eller bil) utnyttjar ozon, O3. Ozone_moleculeDet är trevärt syre där en av molekylerna sitter så löst att den närmast spontant faller loss. Den har då med sig en negativ laddning, en elektron, som dras till tobakspartikeln som blir elektriskt neutral, ”tappar greppet” och lätt lossnar. Ozon har en karakteristisk doft som känns i mycket små koncentrationer. Prova gärna att lukta nära t.ex. en elektrisk borrmaskin när den är igång.

Verkligheten är långt mer komplicerad än i mina exempel och jag tar gärna emot rättelser och kompletteringar.