Arkiv för kategori ‘Immunförsvar’

Silverförespråkare väljer gärna att visa ofarligheten in vivo (på levande djur/människor) medan effekter demonstreras in vitro (cellkulturer på objektglas i laboratorier). Båda angreppssätten är, var för sig, förståeliga då önskade resultat är lätta visa. Problem uppstår när man, in vivo, försöker uppnå verksamma koncentrationer i andra vävnader än ytliga (hud och annat som gränsar mot omgivningen).

Effects of Silver Nanoparticles on the Liver and Hepatocytes In Vitro

Källa: Oxford journals – Toxicological Sciences

Detta är en in vivo djurstudie på råttors lever och en in vitro studie på mänskliga leverceller. Den är omfattande och så detaljerad att bara en uttalad nörd grottar ner sig i den. Å andra sidan är den väldigt tydlig för den som gör sig besväret. Här ägnar jag mig närmast uteslutande åt in vivo-studien då den, till skillnad från andra, ser till att allt nanosilver hamnar i blodet.

Studien omfattar 11 späckade sidor och det finns inga möjligheter att citera och kommentera annat än en liten del. Ta hem fulltexten, läs och begrunda.

NPs have been shown to translocate to the bloodstream following inhalation and ingestion, and such studies demonstrate that the liver is an important organ for accumulation.

Min tolkning: Nanopartiklar har påvisats i blodomloppet efter inandning och inmundigande och studier visar att levern är ett viktigt organ där de samlas.

Detta gäller nanopartiklar i allmänhet, silver nämns ännu inte.

Therefore, this study used a simple hepatocytes model combined with an in vivo injection model to simulate the passage of a small amount of NPs into the bloodstream following exposure, e.g., via ingestion or inhalation…

Min tolkning: Denna studie använde leverceller i kombination med intravenös injektion av nanopartiklar för att simulera tillförsel av en liten mängd nanopartiklar till blodet.

Detta steg är avgörande, man ser till att partiklarna garanterat hamnar i blodomloppet utan chans/möjlighet att sorteras bort av kroppens egna system.

We found that Ag NPs were highly cytotoxic to hepatocytes (LC50 lactate dehydrogenase: 2.5 μg/cm2) and affected hepatocyte homeostasis by reducing albumin release. At sublethal concentrations with normal cell or tissue morphology, Ag NPs were detected in cytoplasm and nuclei of hepatocytes.

Min tolkning: Nanopartiklar av silver var kraftigt giftigt för leverceller och resulterade i minskad frisättning av albumin. Nanosilver upptäcktes i icke dödliga koncentrationer i levercellernas cytoplasma (cellvätska) och cellkärnor.

Albumin är det vanligaste proteinet i blod och fungerar som ”bärare” av ämnen som inte på egen hand klarar att färdas i blodet, dit hör vissa hormoner ex. sköldkörtelhormoner och steroidhormoner samt fettsyror. Albumin i kombination med fettsyror kallas fria fettsyror.

Andra situationer som kan leda till albuminbrist är till exempel leverskada på grund av förgiftning, utbredda tumörer i levern, njursjukdom, svåra infektioner, eller brännskador.

Källa: Albumin/Wikipedia

Silver i cellkärnor är måttligt önskvärt, om de kommer i kontakt med arvsmassan förstör de cellens förmåga att utföra sina uppgifter. DNA är cellens eget bibliotek över kroppens sammanlagda arvsmassa och en fullständig handledning över samtliga cellers arbetsuppgifter. ”Brinner det i biblioteket” så är cellen inte längre (fullt) funktionsduglig. Silverförespråkare brukar hävda att det är en av silvrets önskvärda effekter på bakterier, men denna studie visar tydligt att den inte är begränsad till dem.

For any exposure routes involving translocation to the bloodstream, the liver is one of the most important targets, and previous studies have shown a high accumulation of NPs in the liver after injection (Hirn et al., 2011), retention of particles in the liver after ingestion (Schleh et al., 2012), and effects on the liver following inhalation (Gosens et al., in preparation). The liver was, therefore, chosen as a target organ in this study to identify adverse effects of nanoparticles should they gain access to the blood.

Min tolkning: Beroende på resultat av tidigare studier valde vi att studera levern för att identifiera oönskade effekter om nanopartiklar når blodomloppet.

Notera den lilla brasklappen ”…should they gain access to the blood.”, alltså om (eventuellt kan man tolka som när) nanopartiklar når blodet.

Factors that can cause these conflicting results include the physicochemical characteristics of the NPs, such as size, shape, and solubility, and also the choice of model, exposure times, and concentrations. Therefore, it is very important that appropriate in vitro models and conditions are chosen to closely reflect in vivo toxicology…

Min tolkning: Nanopartiklars storlek, form och löslighet och val av studiemodell, koncentration och exponeringstid kan ge motsägelsefulla utfall. Av dessa skäl är det viktigt att efterlikna partiklarnas effekt in vivo.

Min åsikt är att de studier jag hittills sett (medvetet?) bortser från det senare. Här har man löst det genom att helt förbigå kroppens utsortering och samtidigt ger en väl definierad mängd nanopartiklar i blodet:

For this particular study, in vivo exposures to NPs were conducted via the lateral tail veins of rats.

Min tolkning: För denna studie injicerades nanopartiklarna via en ven i svansen på råttorna.

Man injicerade 50 μg nanopartiklar och djuren visade inga kliniska symtom under de 24 timmar försöket varade. Tilläggas kan att de, såvitt jag förstår, hölls nedsövda hela tiden.

mrna-och-tnf-alfa

 

Analysis of mRNA expression in rat liver 24 h after iv injection of 50 μg of NM300 and NM300-DIS showed an increase in IL-1RI, MIP-2, and TNF-α expression…

Min tolkning: Analys av mRNA (”budbärare” mellan DNA och cellens ”arbetsplatser”) efter injektionen visade en ökning av uttrycket för TNF-α.

De svarta staplarna är referensvärden för kontroller som enbart fick injektion av lösningsmedlet utan nanopartiklar.

 

TNF-α (Tumor necrosis factor) är en del av immunförsvaret:

TNF:s huvudsakliga funktion är att aktivera inflammation i kroppen genom olika mekanismer. Bland annat rekryterar TNF neutrofiler och monocyter från blodet, ökar uttrycket av adhesionsmolekyler på endotelcellerna, ökar utsöndring av plasmaproteiner från levern (t.ex. CRP och komplement), inducerar feber via hypotalamus samt har även förmågan att skapa blodproppar genom att koagulera blod.

I studien finns dessutom ett långt parti om en in vitro studie på en mänsklig cancervävnad. Denna postning är redan lång och skulle bli fullständigt oformlig om jag inkluderar även den.

Följande gäller nästan uteslutande silverinjektioner på levande råttor:

…to our knowledge this is the first report showing a decrease in albumin production in response to Ag NPs, suggesting that albumin release can be used as a marker of adverse effects of these NPs. Albumin is downregulated in the acute-phase response to a number of stresses, including inflammation (Sharma et al., 1992), and is a marker of liver function (Hasch et al., 1967).

Min tolkning: Såvitt vi känner till är detta den första rapporten som visar att albuminproduktionen minskar till följd av nanosilver. Albumin nedregleras som följd av stress, inkluderande inflammation och är en markör för leverfunktion.

Så en titt in i cellers innersta:

In contrast, in vivo, we found smaller agglomerates of less than 10 Ag particles in the cytoplasm, which were not visible under the light microscope and did not appear to be membrane bound. The presence of Ag NPs in the nucleus suggests that at least some of the particles were initially free within the cytoplasm.

Min tolkning: Vi fann små samlingar av silverpartiklar i cellvätskan och inte kopplade till cellmembranet. Förekomsten av silverpartiklar i cellkärnor visade att åtminstone några av partiklarna varit fria i cellvätskan.

och

Uptake into the nucleus has been previously reported for Ag NPs in human bronchial epithelial BEAS-2B cells and was associated with genotoxicity (Kim et al., 2011)

Min tolkning: Upptag i cellkärnor av nanosilver i andningsvägarnas epitel har påvisats och kopplats till skador på den genetiska informationen.

Här kan det vara läge att läsa gårdagens postning Hur ”äter och dricker” celler? för en möjlig förklaring (pinocytos) till hur ämnen kan ta sig in i celler.

Så följer några rader om styrkor och svagheter i studien:

The main advantage of the tail vein exposure route is that the dose reaching the blood stream, and the liver, can be controlled and replicated between the animals in the exposure group.

A disadvantage of the injection study is directly related to its advantage, namely that it is not sufficient to model the actual uptake of particles from the gut, lung, or damaged skin, and how these particles are changed or modified when translocating into the bloodstream.

Min tolkning: Den största fördelen med injektionsmetoden är att man entydigt känner den dos som når blodet och kan återupprepa den.

En nackdel med injektioner är att man förbigår kroppens mekanismer som påverkar upptag via mag- och tarmkanalen, lungor eller skadad hud och ändrar eller modifierar partiklarna under transporten till blodomloppet.

The devil is in the detail: ”…and how these particles are changed or modified when translocating into the bloodstream.” Läs citatet i sin helhet, särskilt den sista meningen, flera gånger och ”känn in” dess betydelse!

Min hypotes är att användning av nanosilver i form av ”(elektro)kolloidalt silver” som man sväljer för att påverka vävnader som skall nås via blodomloppet i praktiken är både ofarligt och meningslöst. Dels för att förekommande koncentrationer och rekommenderade mängder är låga, dessutom att våra kroppar avhyser merparten (90 – 99% inom ett dygn) av silvret genom direkt passage till toaletten.

Jag uppskattar om någon förser mig med seriösa studier i fulltext som visar hur oral (via munnen) användning av nanosilver och/eller silverjoner resulterar i silver i blod. Gärna även de som visar motsvarande data för inandning av KS i sprayform.

Den som upptäcker fel i det jag skriver kan kommentera eller maila till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?,  Silver – del 3, utspädningseffekten,  Silver – del 4, Vad är en kolloid?,  Silver – del 5, Är det ”farligt”?,  Silver – del 6, passage genom hud,  Silver – del 7, metalloproteiner? Silver – del 8, vad är oligodynamisk effekt?,  Silver – del 9, några av silverjonens egenskaper,  Silver – del 10 – en potent virusdödare?,  Silver – del 11, begreppsförvirring?,  Silver – del 12, Harmlöst eller farligt?

Fortsättning följer.

Annonser

silver_symbol_moon_crescent

Umgänget grundämnen emellan i kemins atom- och molekylskala är rätt ”ytligt”. Grundämnens ”ID-kort” är i första hand det yttersta elektronskalet, valensskalet. De allra stabilaste, ädelgaserna, har alla exakt de 8 elektroner som krävs för att skalet (och dess orbitaler) skall vara fullbesatt och stabilt. Alla övriga grundämnen har från 1 till 7 elektroner i valensskalet. Ädelgaserna är de högdragna atomerna, tar inte kontakt med och avvisar oftast andras inviter, även från likar.

Bilden visar nymånen, en symbol som alkemister använde för att beteckna silver.

Det finns alltså många ämnen med precis samma antal yttersta elektroner och för att skilja dem åt är nästa fråga ungefär ”hur stor är du”. I lite mer inlindade termer gäller det atomnumret och atommassan, antalet positiva laddningar i atomkärnan (protoner), antalet kärnpartiklar (inklusive neutroner) och hur ”tajt” den håller i sina elektroner.

Tips inför fortsättningen: repetera om fria radikaler här.

En kort sammanfattning:

En fri radikal är en atom eller molekyl med laddning!

En fri radikal är ständigt beredd att ersätta en förlorad elektron. Om den kommer i kontakt med en annan molekyl som inte ”håller i” sina elektroner tillräckligt hårt så stjäl den helt enkelt det den kan få tag i. Och nu är det ombytta roller, molekylen som nyss slarvade med sina tillgångar blir hux flux en fri radikal och börjar i sin tur gå på rövarstråt.

På det sättet kan elektronbristen vandra vidare tusentals steg till dess den inte hittar något vidare ”offer” eller stöter på en antioxidant som permanent sätter stopp för det kemiska elektronröveriet. Till dessa hör C– och E-vitamin.

En fri radikal är en simpel elektrontjuv.

En silverjon (Ag+) är positivt laddad på grund av sitt elektronunderskott, en elektrontjuv i vardande och fungerar därför på samma sätt som andra fria radikaler*!

  • Vårt immunförsvar använder faktiskt fria radikaler (ämnen med elektronunderskott) som vapen för att bekämpa inkräktare. I urinblåsan råder en ytterst näringsrik miljö för bakterier. Till all lycka är urinen ovanligt rik på fria radikaler vilka framgångsrikt bekämpar skadliga bakterier och gör urinen närmast steril.

Inom sjukvården används silverbehandlade instrument där risken för bakterier är förhöjd och försök med silverbehandlade förband görs. Detta är exempel på behandling där man, åtminstone i teorin, lätt når tillräckligt höga silverkoncentrationer under lång tid utan att behöva förlita sig på kroppens egna upptags- och transportmekanismer.

  • En sökning hos SBU, Statens beredning för medicinsk och social utvärdering, ger 9 träffar på ordet silverförband: ”Det vetenskapliga underlaget är otillräckligt för slutsatser om silverförbands effekt på andel läkta sår, sårstorlek, smärta, livskvalitet, antal infektioner och antibiotikaförbrukning vid behandling av kroniska sår.”
  • SBU: Silverförband vid behandling av kroniska sår, Sammanfattning och slutsatser. Ex: ”Syftet med silverförband är att minska mängden bakterier i såret och därmed påskynda läkningen. Men den samlade forskningen räcker inte för att avgöra om såren läker bättre med sådana förband, eller om de har effekt på bakterier i kroniska sår, konstaterar SBU.”

Hos entusiastiska silverförespråkare finns vanligen gott om hänvisningar till studier som menar att s.k. kollodialt silver/nanosilver är ofarligt, bland annat beroende på att 90 – 99% på kort tid passerar ur kroppen.

Hos samma entusiastiska silverförespråkare finns även gott om hänvisningar till studier som finner att kolloidalt silver/nanosilver visat sig begränsa och döda sjukdomsframkallande bakterier, till och med cancerceller. Den blotta mängden hänvisningar gör arbetet att läsa och bedöma alla avskräckande stort. För egen del har jag gjort några nedslag och funnit att försöken, vad gäller förment positiva effekter, utförts ”in vitro”, alltså i laboratoriemiljö och på objektglas eller liknande. Där är det oerhört enkelt att nå tillräcklig silverkoncentration (även som starkt reaktiva silverjoner) under tillräckligt lång tid och i direkt anslutning till celler man vill påverka. Den som finner publicerade ”vetenskapliga” försök som gjorts in vivo och i/på vävnader som inte är i anslutning till kroppens ”ytor” är välkommen att kommentera eller maila mig, adressen finns nedan.

Hur behandlar man bakterier/celler i kroppen (in vivo) som inte kan nås direkt via sår eller slemhinnor? Först några antaganden som känns rimliga men kan kompletteras och korrigeras om de visar sig vara ofullständiga eller felaktiga.

  1. För att vara kemiskt aktiv (jonen Ag+) måste den finnas i en vattenrik miljö (ex. blod/lymfa).
  2. För att vara verksamt måste (den fria radikalen) Ag+ nå minst samma koncentrationer vid målområdet in vivo (i levande vävnad) som krävs in vitro (i provrör/på objektglas) och under minst samma tid.
  3. För att vara ofarligt (få eller inga biverkningar) får behandlingen inte skada andra än målvävnaderna annat än i rimlig omfattning.

I ett försök med cancer i mänsklig vävnad** fann man att hälften av cancercellerna dödades inom 5 timmar av 3,5 ng/ml ”silver”. Koncentrationen är 0,0000000035 gram fördelat på 1 gram vätska, annorlunda uttryckt 3,5 ppm. Vi talar alltså om en oerhört potent gifteffekt av ett förment helt ofarligt ämne.

För att vara rimligt ofarligt under transporten till målvävnaden måste tillräckligt mycket av silvret i huvudsak vara inaktivt (oladdat silver/metalliskt nanosilver). Hur kan metalliskt, kemiskt näst intill inaktivt och därmed ofarligt silver, aktiveras till verksamt Ag+ på just på rätt ställe? Det kostar energi att avlägsna en elektron, varifrån kommer den?

En entusiastisk silverförespråkare hävdar att hans kollodiala silverprodukt till 90% utgörs av jonformen Ag+. Källa: http://www.ion-silver.com/allt.om.silver.html

Ionosil uppges ha koncentrationen 10 ppm (parts per million) vilket innebär 0,00001 gram silver per ml, med rådet att blanda två teskedar per liter dricksvatten för att döda bakterier i dricksvatten.

Från samma sida:

Gör vi ett snabbt räkneexempel på hur 10 ml 10 ppm starkt kolloidalt silver späs med blod (ca 5 liter hos en vuxen) enbart så får vi:

5 liter = 5000 ml = 500 gånger mer än 10 ml. Detta motsvarar 500 gångers utspädningseffekt enbart i blodet. Det gör att delar vi 10 ppm med 500 då får vi en blodkoncentration motsvarande 0.02 ppm. Hela kroppsvikten på säg 70 kilo motsvarar grovt räknat 70.000 ml. Slår vi ut utspädningseffekten på hela kroppen talar vi om koncentrationer om 0.001 ppm.

Dessutom:

90-99% är utrensat redan någon dag efter själva intaget.

Låt oss betrakta blodkoncentrationen 0.02 ppm = 20 ng/ml Ag. I studien om cancerceller fann man att 3,5 ng/ml efter 5 timmar dödat hälften av cancercellerna i studien. Vad hindrar att silver i jonform (beter sig som en fri radikal) från att ställa till skada under färden i blodet, alternativt neutraliseras av antioxidanter?

Då det (såvitt för närvarande känt) inte finns någon målinriktad transport av silver i kroppen kan det även vara intressant att citatet nämner att utspädningseffekten i hela kroppen ger 0.001 ppm (1 ng/ml), klart lägre än de 3,5 ng/ml som visats döda hälften av cancerceller i ”provrör”.***

Till det måste fogas att kroppen snabbt eliminerar 90 – 99% av tillfört kollodialt silver inom ett dygn. Det finns ingen större anledning att tro att detta silver varit ute i kroppen och gjort sin kur för att sedan rensas ut. Betydligt sannolikare är att silvret inte tas upp i nämnvärd omfattning under sin passage genom mag- och tarmkanalen utan hamnar i toaletten utan vidare spisning.

Om 90 – 99% rensas ut tämligen omgående krävs rimligen att doseringen är mycket högre än den silverentusiasten rekommenderar. Ta inte det som ett förslag att öka doseringen utan som ett skäl att kollodialt silver i doseringar som anses ofarliga också är meningslösa för att behandla kroppens inre!

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?,  Silver – del 3, utspädningseffekten,  Silver – del 4, Vad är en kolloid?,  Silver – del 5, Är det ”farligt”?,  Silver – del 6, passage genom hud,  Silver – del 7, metalloproteiner? Silver – del 8, vad är oligodynamisk effekt?

Fortsättning följer.


Info för nördar: Ett elektronpar är två elektroner som befinner sig i samma atomorbital i en atom. Eftersom de befinner sig i samma orbital måste de ha motsatt spinn. Elektronparsbegreppet är viktigt i diskussionen av kovalenta bindningar. Kovalent bindning kallas också elektronparbindning. Det är antalet fria elektronpar som avgör hur många andra atomer en atom kan binda med elektronparbindningar; till exempel kan kol binda fyra andra atomer, syre två andra och väte en annan atom.

En molekyl som har en eller flera oparade elektroner kallas radikal.

Källa: Wikipedia

Allmänt om ädelgaser: Andra gasatomer uppträder parvis (ex. H2, O2, N2). Ädelgaserna är ”singlar” och bara två, krypton och xenon, ingår alls i molekyler, vanligen där det ytterst reaktiva grundämnet fluor ingår, en slags ”medlare”.

*) Potenta producenter av fria radikaler är tobaksrök och överdrivet solande. I det senare fallet är det fotoner i UV-området som har tillräcklig energi för att permanent excitera elektroner så att de helt lämnar sin atom.

**) Jag planerar att återkomma till detta försök i ett senare inlägg. Den nyfikne kan redan nu söka på Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

***) Silver i den aktiva jonformen kan bara förekomma i vatten och då våra kroppar består av cirka 2/3 vatten så minskar den maximala utspädningseffekten något.

image

Källa: kurera.se

Du har hört det många gånger, fria radikaler skadar din hälsa. Men vad är det och hur skadar dom? Wikipedia beskriver så här:

”En fri radikal eller bara radikal är en atom eller molekyl som har oparade elektroner i det yttersta elektronskalet.”

Free-radicals-oxygen

Den som kan kemi har säkert inga problem med detta, det är glasklart, men för resten av oss, vad betyder det? Med lite förenkling kan beskrivningen bli så här:

En fri radikal är en ofullständig molekyl med ett elektronunderskott!

Den fria radikalen är hela tiden på jakt för att ersätta bristen. Om den kommer i kontakt med en annan molekyl som inte ”håller i” sina elektroner tillräckligt hårt så stjäl den helt enkelt det den kan få tag i. Och nu är det ombytta roller, molekylen som nyss slarvade med sina tillgångar har hux flux blivit en fri radikal och börjar i sin tur gå på rövarstråt.

På det sättet kan elektronbristen vandra vidare tusentals steg till dess den inte hittar något vidare ”offer” eller stöter på en antioxidant som permanent sätter stopp för det kemiska elektronröveriet. Till dessa hör C– och E-vitamin.

Av och till stannar röveriet upp i någon viktig fett- eller aminosyra och kan då skada den cell som den tillhör. Om det sker i alltför stor utsträckning så blir det en vävnadsskada. I klartext:

En fri radikal är en simpel elektrontjuv. Svårare än så är det inte 

Enkel– och fleromättade fetter har lättåtkomliga elektroner att röva, de finns i de dubbla bindningarna mellan atomerna i kolkedjan. Mättade fettsyror/fetter skyddar sina elektroner effektivare och har därför betydligt större hållbarhet. 

Men finns det något positivt med dessa fria radikaler? Jo, det gör det och den egenskapen utnyttjar immunförsvaret! Beroende på sin ringa storlek är bakterier känsliga för de fria radikalernas elektrontjuveri. Om immunsystemet bombarderar med ”radikal ammunition” så dör de. Normalt sett är vår urin praktiskt taget steril vilket beror på ett ständigt bombardemang av fria radikaler.

Varifrån kommer ”ofullständiga molekyler”?

Där kan nog finnas mängder av svar men inget ämne kan byggas upp från sina beståndsdelar på oändligt kort tid och till dess den sista elektronen är på plats så har vi en fri radikal på jakt. Så länge du andas kommer syret att producera miljarder fria radikaler per sekund. Energirika fotoner i UV-ljus från solen eller solarier, har också kapacitet att bryta upp bindningar mellan atomer och peta loss elektroner.

  • Den som solar onödigt mycket får stora mängder fria radikaler i huden som förstör bindvävsproteinet kollagen som då tappar sin elasticitet och ger rynkig hud.
  • En annan följd av fria radikalers inverkan på kollagen är skörbjugg vilken motverkas genom antioxidanten C-vitamin som motverkar vidarespridning av fria radikaler.
  • Tobaksrök har enorma mängder laddade partiklar och är därmed en betydande producent av fria radikaler. Du märker det genom att tobaksdoften fastnar i ”allt” som inte är elektriskt ledande, tapeter, mattor, gardiner. Diskbänken av rostfritt stål slipper undan sånär som på de partiklar som helt enkelt dalar ner och är lätta att torka bort. Ett sätt att sanera en rökares bostad (eller bil) utnyttjar ozon, O3. Ozone_moleculeDet är trevärt syre där en av molekylerna sitter så löst att den närmast spontant faller loss. Den har då med sig en negativ laddning, en elektron, som dras till tobakspartikeln som blir elektriskt neutral, ”tappar greppet” och lätt lossnar. Ozon har en karakteristisk doft som känns i mycket små koncentrationer. Prova gärna att lukta nära t.ex. en elektrisk borrmaskin när den är igång.

Verkligheten är långt mer komplicerad än i mina exempel och jag tar gärna emot rättelser och kompletteringar.

Fullkorn, visst låter det ”nyttigt”? Du har sett och hört påståendet många gånger så det måste helt enkelt vara ren och äkta sanning. Eller?

Frö av veteTill att börja med så är människan inte naturliga eller ens anpassade fröätare! Någon konstaterade sarkastiskt att ”…om vi vore fröätare så skulle vi ha näbb!” Kan ju hända att det var ett nog så generellt påstående, men ur evolutionsperspektiv så har människan inte ätit nämnvärda mängder frön förrän vi blev jordbrukare för runt 10 000 år sedan. Det är en lång tid, men människan anses ha anor sedan runt 250 000 000 år, alltså 25 000 gånger längre tid. Vi är därför alldeles säkert säkert genetisk långt mer influerade av utvecklingen före spannmålsodlandet.

I fullkornsmjöl finns mycket mer av det ursprungliga fröet i slutprodukten. Det brukar räknas som ”nyttigt”. Men vad ingår i fröets ursprungliga ”förpackning” och vilken funktion fyller det egentligen?

Låt oss för en kort stund se det ur växtens synvinkel.
För sin fortlevnad måste fröet innehålla källan till liv, den genetiska koden etc. samt en resväska med näringsämnen, mineraler och diverse annat som den behöver för att etablera sig där fröet hamnar. Detta ”travel pack” omges av ett sammanhållande fiberhölje som skyddar fröet. Utöver detta ingår ett antal kemikalier som på ett eller annat sätt skall främja förutsättningarna för att åtminstone gro. Dessa kemikalier är intressanta, dit hör bland annat fytinsyra och lektiner.

Fytinsyran är bärare av fosfor för groddens behov och finns i alla sädesslag. I människans matsmältning binder fytinsyran även andra mineraler mineraler som järn och zink. Kroppen tar därför upp mindre av dem om man äter mat med fytinsyra, de passerar ut med avföringen.

Sädeskornen innehåller enzymer, fytaser, som bryter ned fytinsyran. Detta sker när de utsätts för vatten i samband med att de gror och frigör det fosfor som grodden behöver. Dessa enzymer aktiveras även vid surdegsjäsning och då försvinner nackdelen med fytinsyran. Om man under tillverkningen av mjölet skadar dessa enzymer så hjälper inte ens surdegsjäsningen! De äkta fröätarna kan själva producera dessa fytaser, dit hör t.ex. råttor.

En del växter sprider sig genom att utsätta sig för att ätas. Dit hör frukter och bär med ett smakligt hölje som omger en robust kärna som klarar passagen genom magen utan problem. För en del är denna passage nödvändig för att de skall gro. Men sädesslagens fröer hör inte dit, de har en annan taktik för att skydda sitt näringsrika innehåll. De innehåller lektiner, gifter som i tillräckliga mängder avskräcker angripare. Vi talar inte om dödliga effekter, även om de finns*, men tillräckligt för att dämpa konsumtionen. Fröätare utnyttjar det faktum att det finns många olika lektiner med olika verkan. De äter därför selektivt av många olika arter och minskar dosen av varje enskilt lektin. Därför slipper de må illa och ingen enstaka frösort utrotas utan växterna kan leva vidare. Ordet lektin kommer för övrigt från latinets ”legere” som betyder ”att välja”.

Lektinerna drabbar fullkornsätande människor negativt, vår konsumtion kommer från få råvaror och numera i höga doser. (SLV föreslår ju bröd till måltider och mellanmål!) Och självklart har det ingen betydelse om du varierar mellan olika sorters bröd eller fabrikat, det är bara några få sädesslag som dominerar din kost.

  • Lektiner påverkar kalciumupptag negativt och är alltså en riskfaktor för benskörhet.
  • Lektiner bryts inte ned i människans tarm utan kan passera in genom tarmslemhinnan vilket kan leda till autoimmuna sjukdomar. Lektiner och gluten är tämligen nära associerade och om proteinet lektin hamnar på fel ställe så bekämpas det av immunförsvaret. Nu råkar gluten ha en strukturell likhet med en del av tarmen som immunförsvaret ger sig på och så uppstår glutenintolerans.
  • Lektiner kan öka slemproduktionen i tarmen vilket allmänt dämpar näringsupptaget.
  • Lektiner kan minska kroppens reaktion på hormonet leptin som utgör en signal om kroppens fettförråd. Detta kan innebära att man fortsätter att äta trots att kroppens redan upplagrade energi är tillräcklig. (1)

Nu kan man ju i ljuset av föregående faktiskt undra om glutenintolerans egentligen är en nackdel. Om den glutenintolerante tar lärdom och undviker spannmålsprodukter så slipper han ju dels sjukdomen, dels de övriga nackdelarna av ohämmat fröätande.

Så, vad tycker du? Är fullkornsprodukter nyttigt?


1) Agrarian diet and diseases of affluence – Do evolutionary novel dietary lectins cause leptin resistance? Tommy Jönsson, Stefan Olsson, Bo Ahrén, Thorkild C Bøg-Hansen, Anita Dole and Staffan Lindeberg

*) Om ricin och mordet på Georgi Markov 1978.

En och en faller konventionella åsikter när allt fler forskare och andra börjar granska ”gammeltänk”. Inte nödvändigtvis så att de hittillsvarande företrädarna byter åsikt, snarare ersätts de med (något) mer uppdaterade åsikter i takt med pensioneringar och begravningar. Livsmedelsverket har slutat att tala om ”mättade fetter och transfetter”, möjligen sedan de långt om länge insåg att transfetter definitionsmässigt byggs upp med enkel– och/eller fleromättade fettsyror. Man demoniserar inte längre ägg. Man har putsat på Nyckelhålet för att inte i onödan gynna tillsatt socker och liknande. Men fortfarande är man ytterst restriktiv när det gäller salt. Mitt föregående blogginlägg om salt visar hur det eventuellt ökar överlevnaden för diabetiker. Läs det gärna för att få några grundläggande fakta om saltets betydelse för hälsan.

Så över till dagens ämne:

Does high-salt diet combat infections?   

Conventional wisdom holds that consuming too much sodium chloride is bad for you. High-salt diets have been linked to high blood pressure, cardiovascular disease, and even autoimmune disorders. But a new study shows that dietary salt could also have immune-boosting effects.

Källa: Science/AAAS

Min tolkning: Enligt konventionellt tänkande är natrium/salt inte bra. Högsaltkost kopplas till högt blodtryck, hjärt– och kärlsjukdom, till och med autoimmuna sjukdomar. Men en ny studie visar att salt i maten även har en fördelaktig effekt på immunsystemet.

Vanligt salt, NaCl, är kraftigt hygroskopiskt (fylligare engelsk version här). Hygroskopi innebär att saltet drar till sig vatten, till och med ur luften. Denna egenskap används t.ex. vid långtidslagring av mat då saltet dödar bakterier genom att suga ur dem deras vätskeinnehåll.

“The idea that salt storage might have evolved for host defense is very exciting,” says Gwen Randolph, an immunologist at Washington University in St. Louis who was not involved in the study. “It’s almost so new that it’s hard to swallow. I think it will take some time for the immunology community to allow this concept to take hold.”

Studien som ger denna annorlunda infallsvinkel till saltets effekter har en rubrik torrare än Atacamaöknen: Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense. Notera att försöken gjorts på möss.

Jens Titze vid Vanderbilt University School of Medicine i Nashville, en av studiens författare, fann att till och med möss på lågsaltkost hade osedvanligt höga halter av salt i anslutning till sår i huden. Detta ledde till hypotesen att kroppen transporterade salt till infekterade områden för att skydda.

In other words, “we are salting our cells in order to protect ourselves,” says Jonathan Jantsch, a microbiologist at the University of Regensburg in Germany and first author on the study, which appears in the current issue of Cell Metabolism.

Min tolkning: ”vi saltar våra celler för att skydda oss” säger Jonathan Jantsch, a mikrobiolog vid Universität Regensburg, Tyskland, försteförfattare till studien.

Man gjorde inledande provrörsförsök med makrofager som dödar genom att använda ROS (Reactive Oxygen Species, det vi kallar fria radikaler), därefter ”äter” de upp resterna. Forskarna tänkte sig att denna process gynnades av förhöjda saltkoncentrationer. Man kultiverade makrofager från möss och tillsatte salt så att det motsvarade den mätta koncentrationen i skinnet hos infekterade möss varvid man fann att produktionen av skyddande ämnen ökade. Så tillsatte man Escherichia coli eller Leishmania major och fann att dessa halverades efter 24 timmar i den saltare miljön.

To test whether increased salt intake enhances immune defense in living mice, the researchers fed one group of mice a high-salt diet and the other group a low-salt diet for 2 weeks, then infected the skin on the rodents’ footpads with L. major. For the following 20 days, both groups of mice showed significant swelling in their footpads as the infection took hold, regardless of their diet. After that period, however, mice on the high-salt diet showed improved healing with fewer foot lesions and a lower parasite load than the group eating low-salt food.

Min tolkning: För att testa om ökad saltkonsumtion förbättrar immunförsvaret hos levande möss gav man dels en högsaltkost, dels en lågsaltkost till olika grupper av möss under 2 veckor varefter man infekterade deras fötter med Leishmania major*. Under de följande 20 dagarna visade djuren en tydlig ansvällning oavsett kost men därefter förbättrades högsaltgruppens värden.

 Lesion development of LSD and HSD mice

Grafen visar ansvällning av huden på mössens fötter efter infektion med L. major. De ofyllda fyrkanterna gäller lågsaltgruppen, de fyllda högsaltgruppen. Med början runt 30-35 dagar börjar de skilja sig tydligt åt då högsaltgruppen blir bättre.

Detta från musdelen av experimentet. När det gäller människor gjorde man följande observation;

In humans, the group found evidence that salt accumulation may be localized to sites of infection. Using a new MRI technique that measures sodium in skin, the team found unusually high levels of salt accumulation in bacterial skin infections of people, whether they consumed a high-salt diet.

Min tolkning: Vad gäller människor fann man tecken på förhöjd saltkoncentration vid infektionsställen. Med MRI som mäter natrium i huden fann man ovanligt höga halter av salt i huden vid bakteriella infektioner oavsett om man åt en saltrik kost eller ej.

Så kommer de obligatoriska friskrivanden om att inte äta mer salt.

But don’t start loading more salt on your fries just yet. “The one thing you don’t want to take away from this study is that it authorizes you to eat more salt to enhance immunity,” Randolph says. A high-salt diet may have been a useful way to fight infections in our ancestors, before antibiotics existed or we lived long enough to develop cardiovascular diseases, but today, the detrimental effects of a high-salt diet outweigh any potential immunological benefits, according to Jantsch.

Studien är definitivt inte lättläst och innehåller mycket som jag inte varit i närheten av att förstå.


Leishmaniasis eller leishmaniosis är en sjukdom som orsakas av protozoparasiter av genus Leishmania och sprids genom bettet från vissa typer av sandmygga. Besök gärna Wikipedia eller engelska Wikipedia och se hur läskiga sår en människa kan få.