Arkiv för kategori ‘Ketoner’

Röda blodkroppar är våra överlägset vanligaste celler, de utgör ungefär 84% av alla och innehåller hemoglobin som fraktar ut syre och avlägsnar koldioxid. HbA1c anger andelen av ett protein i hemoglobin, A1c, som förstörts av blodsocker. Det sker ungefär som när man blir klistrig om fingrarna av att doppa dem i saft eller äter ett Wienerbröd.

Glykerat hemoglobin med sockerklet på fungerar inte fullt ut, de fastnar i varandra och omgivningen. Blodet förnyas ständigt, röda blodkroppar har en livslängd runt 120 dagar (81 – 146) innan de återvinns i levern och ersätts med nya och fräscha från benmärgen. Glykering sker hos alla, även de som inte är diabetiker, men inte i samma utsträckning, vanligen är mindre än ungefär 5% förstörda hos friska.

Den enhet vi använder i Sverige är mmol/mol som anger antalet glykerade A1c per 1000. HbA1c beror i stor utsträckning av hur medelblodsockret varit, främst under de senaste 3 – 4 veckorna, men påverkas i särskilt stor utsträckning av de riktigt höga som förekommit. Påtagligt låga blodsockervärden ger inte så stora förbättringar man kan tro, de minskar visserligen tillskottet av nya glykeringar men kan inte avlägsna de som redan finns.

Blodsockervärden på din mätare kan inte jämföras rakt av med HbA1c. Friska människor har HbA1c från 20 till 42 mmol/mol och för ”kost och motionsbehandlade” diabetiker typ 2 är sådana eftersträvansvärda men näst intill omöjligt att nå med vanliga kostråd.

Vilka värden för HbA1c är önskvärda?
Bild från diabeteshandboken.se

  • Man siktar på att undvika skador inom 10 – 15 år, en låg målsättning som sannolikt beror på den konventionella vårdens oförmåga att bryta det så kallade naturalförloppet.
  • När det gäller andra aspekter som blodtryck och blodlipider (”kolesterol”) ställer man klart strängare krav än för övrigt friska. Varför inte när det gäller ett centralt problem för diabetiker, jämna och tillräckligt låga blodsockernivåer?

Varför fastnar glukos vid andra molekyler?

  • I kemins underbara värld finns flera sätt för atomer och molekyler att ”umgås”. Ett av de allra vanligaste i vår metabolism gäller R-OH-grupper. Låter lite knepigt men är ganska lätt att förstå med lite hjälp.
  • R i dessa sammanhang kan tolkas som ”Resten av molekylen”, bindestrecket symboliserar en bindning medan OH har sin vanliga betydelse, en syre– och en vätemolekyl bundna till varandra.
  • En helt vanlig vattenmolekyl är exempel på detta, H-OH eller H2O som vi vanligen skriver. OH-grupper i molekyler gör att de gärna ”umgås” med vatten och ju fler de är desto lättare. Det låter ju smidigt, men har en avsevärd nackdel när man ser närsynt på det.
  • En molekyl som helhet är elektriskt neutral, men inte dess beståndsdelar. Slutresultatet blir att den osymmetriska laddningsfördelningen i en OH-grupp kan attraheras till motsatta osymmetrier i andra molekyler utan att det för den skull blir en kemisk reaktion. Ju fler OH-grupper ett ämne har desto större chans  att de hakar fast vid aminosyranystan som kallas proteiner och är mycket välförsedda med lokala osymmetrier i laddningarna.
  • När det gäller glykeringar är det bokstavligen 20 resor värre. Det är kovalenta bindningar där atomer delar elektroner med varandra. En biokemist gjorde följande liknelse: ”Vätebindningar är ungefär som magneter, går att bryta mekaniskt, medan en kovalent bindning kan liknas vid en svetsning.”

Exempel på vanliga ämnen i blodet som har en osedvanligt stor andel OH-grupper är monosackariderna glukos, fruktos och galaktos. I dessa molekyler med 6 kol finns hela 5 OH-grupper, alla kapabla att haka fast vid proteiner.

  • Av någon anledning är fruktos flera gånger mer benägen att fästa vid proteiner. Detta kallas fruktosylering och mäts ej trots att den negativa effekten på hemoglobin är påtaglig.
  • Glykeringen av blodproteinet A1c är lätt att mäta, men bara ett av alla proteiner som drabbas.
  • Följden blir att proteiner med dessa påhäng inte fungerar som de ska och i sin tur kan fastna vid andra.
  • Bindvävsproteinet kollagen är ett exempel, med tiden förlorar det sin styrka och smidighet, hud hänger och senor blir stela.

Vilka energibärande molekyler har många ”klibbande” OH-grupper?

  • En glukosmolekyl med 6 kol har 5 OH-grupper.
  • Ketonen acetoacetat innehåller 4 kol och 1 OH-gruppt
  • Ketonen beta-hydroxybutyrat innehåller 4 kol och 2 OH-grupper
  • Fettsyror har, oavsett längd, en enda OH-grupp. De långa fria fettsyrorna från 12 kol och uppåt visar den aldrig fritt i blodet då den är fasthakad i bärarproteinet albumin.

Som en tumregel kan du räkna med att fler kol- och färre syreatomer i en molekyl innebär större energiinnehåll.

Vilken är skillnaden mellan glykering och glykosylering?

  • Glykering innebär oavsiktlig och slumpmässig försockring, drabbar i princip alla vävnader i kroppen, inte bara blodet.
  • Glykosylering är en noga reglerad process där enzymer gör jobbet och sätter monosackariden där den hör hemma.

Säjer HbA1c hur bra du skött ditt blodsocker?
HbA1c betraktas som ett ungefärligt mått på medelblodsockret under några veckor, men det säger inte hur svajigt det varit. Om blodsockret varit en blandning mellan många riktigt låga och några få höga så kan HbA1c vara ”falskt bra” trots att båda ytterligheterna skapat problem.

Vanligen förutsätts att röda blodkroppar är i omlopp cirka 120 dagar, men tiden varierar mellan 80 och 160 dagar. Kortast är den hos diabetiker och de med anemi (blodbrist) och längst hos friska. Det innebär att friska med jämna och fina blodsockervärden kan ha mediokra HbA1c medan diabetiker med svajiga och höga blodsocker kan ha långt bättre värden än förväntat.

Hur påverkar du ditt HbA1c?
Det finns några strategier och gemensamt för alla är att minska antalet OH-grupper som cirkulerar i blodet. Du har förmodligen aldrig hört detta tidigare, men alla någorlunda framgångsrika metoder gör just det.

  • Kostbehandling med reducerad mängd kolhydrater som LCHF, gärna kombinerat med förändrade ätmönster som 5:2, 16:8 eller varianter av fasta tär på mängden cirkulerande blodsocker samtidigt som man får den mesta energin från fettsyror och ketoner vilket ger lägre HbA1c
  • Fysisk aktivitet använder cirkulerande blodsocker och tär även på befintligt muskel- och leverglykogen så där finns plats att ta upp glukos även efter att den fysiska aktiviteten (arbete/motion) upphör. Detta resulterar i lägre HbA1c. Något många förvånas över, även bland diabetesvårdens personal, är att fysisk aktivitet momentant ökar blodsockernivån då hormoner aktiverar leverns glykogenlager.
  • Större insulindoser, antingen genom insulinstimulerande preparat eller injektioner, ger lägre blodsocker men hämmar samtidigt kroppens normala mekanismer som förser blodet med energibärare som fettsyror/ketoner samt glukos från egna lager som fettväv och leverglykogen.

Du kanske har upplevt det. Du bara flyger iväg i löpspåret och känner varken av håll eller trötthet. Förmodligen har du upplevt runner’s high och forskning visar att du känner den bäst på tom mage.

Källa: Nyhetsbrev från iFORM

Råden i tidskriften iFORM är i grunden konventionella, ät vad du vill men i begränsade mängder och spring bort överflödet. Men ibland träffar de rätt utan att inse det själva. Här nedan kommenterar jag några punkter, men läs gärna resten också.

Mjölksyran sprutar i benen, men plötsligt känner du varken kramper eller håll. Tvärtom känns det som att du utan problem skulle kunna springa ikapp en gasell.

Mjölksyra är en självklar följd av glukosmetabolism när inte syreförsörjningen hänger med. De överbelastade musklerna svarar dåligt, de känns stela och livlösa. Dina armmuskler kan mycket väl arbeta vidare men benen är slut.* För att komma in i andra andningen och få känslan att kunna springa som en gasell krävs en radikal ändring i musklernas energiförsörjning, bara vilja räcker inte.

…nyligen har forskarna också upptäckt att chansen till den eftertraktade kicken är störst när du är lite hungrig.

Hunger är en stark motivationsfaktor och forskarna menar att vi har utvecklat runner’s high som ett incitament till att hitta mat NU.

Senast när skulle hunger i sig ha inspirerat dig till större fysisk aktivitet än att ta dig till ett matställe?

Runner’s high kommer först efter en längre tids löpning.

Maratonlöpare brukar hamna i en schackningsperiod efter 30 – 33 kilometer, klarar man sig förbi den brukar det lätta.

Magisk morgonlöpning: Många gillar att springa på tom mage.

Under natten minskar gradvis energiflödet från tarmpaketet och förhoppningsvis börjar vi utnyttja våra lagrade förråd, t.ex. de i fettväven. Vi tänker oss gärna att kroppen blixtsnabbt anpassar sig till nya förhållanden, men så är det inte. När inget påtagligt sker fortsätter enskilda celler att jobba vidare under de omständigheter som råder på just deras plats.

På morgonen och innan du äter är mängden energibärare i blodomloppet i ovanligt stor utsträckning fett, fettsyror och i någon mån ketoner. Om du då börjar springa så fortsätter du att utnyttja dessa energikällor och ingen av dessa ger mjölksyra. Inte konstigt då att ”morgonlöpning är magisk”.

Om du äter LCHF så är du flera steg närmare att redan från början utnyttja fettmetabolismen som din primära energikälla. Andra som förvånat upptäcker en oväntad inneboende energi är de som fastat några dagar.

Läs mer om Metabol flexibilitet


*) Ett riktigt extremt exempel på förlamande mjölksyra är likstelhet, där enskilda muskelceller försöker fungera trots att livet har flytt. Till det kommer att energiåtgången i muskelarbete är för avslappning, inte anspänning.

HbA1c är ett labbvärde som visar hur mycket proteinet A1c i blodet blivit glykerat, ”nedkletat” med en monosackarid*. Ungefär som när man blir klistrig om fingrarna av att doppa dem i en sockerlösning eller äter ett Wienerbröd.

  • I kemins underbara värld finns flera sätt för atomer och molekyler att ”umgås” på. Ett av de allra vanligaste i vår metabolism finns i R-OH-grupper. Låter lite knepigt men är ganska lätt att förstå med lite hjälp.
  • R i dessa sammanhang kan tolkas som ”Resten av molekylen”, bindestrecket symboliserar en bindning medan O och H har sin vanliga betydelse, en syre– och en vätemolekyl.
  • En helt vanlig vattenmolekyl är exempel på detta, H-OH eller H2O som vi vanligen skriver. OH-grupper i molekyler gör att de gärna ”umgås” med vatten och ju fler de är desto lättare. Det låter ju smidigt, men har en avsevärd nackdel när man ser närsynt på det.
  • En molekyl som helhet är elektriskt neutral, men inte dess beståndsdelar. Slutresultatet blir att den osymmetriska laddningsfördelningen i en OH-grupp attraheras till motsatta osymmetrier i andra molekyler. Ju fler OH-grupper ett ämne har desto större chans  att de hakar fast vid proteiner som är mycket välförsedda med lokala osymmetrier i laddningarna.
  • Exempel på vanliga ämnen i blodet som har en osedvanligt stor andel OH-grupper är monosackariderna glukos, fruktos och galaktos. I dessa molekyler med 6 kol finns hela 5 OH-grupper, hela tiden kapabla att haka fast vid proteiner.
  • Av någon anledning jag inte känner är fruktos flera gånger mer benägen att glykera blodproteinet A1c än glukos.

Följden blir att proteiner med dessa påhäng inte fungerar som de ska och i sin tur kan fastna vid andra. Indirekt kan HbA1c uppfattas som ett väldigt ungefärligt mått på medelblodsockret under några veckor, men det säger inte hur svajigt det varit. Om blodsockret varit en blandning mellan många riktigt låga och några få höga så kan HbA1c vara ”falskt bra” trots att ytterligheterna skapat problem.

  • Glykering, oavsiktlig och slumpmässig försockring, drabbar i princip alla vävnader i kroppen, inte bara blodet.
  • Glykosylering är en noga reglerad process där enzymer gör jobbet och sätter monosackariden där den hör hemma.

Det finns några strategier att förbättra HbA1c, via motion/kostbehandling och insulindosering.

    1. Större insulindoser ger lägre blodsocker och HbA1c men hämmar även kroppens normala mekanismer att förse blodet med energibärare som fettsyror/ketoner samt glukos från egna lager som fettväv och leverglykogen. Märk väl att fettsyror, hur långa de än är, bara har en OH-grupp. Två av ketonerna, acetoacetat och beta-hydroxybutyrat, har en vardera medan aceton har ingen.
    2. Fysisk aktivitet sänker på sikt mängden cirkulerande blodsocker och tär även på befintligt muskel- och leverglykogen så där finns plats att ta upp glukos även efter att den fysiska aktiviteten (arbete/motion) upphör. Detta resulterar i lägre HbA1c. Något många förvånas över, även bland diabetesvårdens personal, är att fysisk aktivitet momentant ökar blodsockernivån.
    3. Kostbehandling med reducerad mängd kolhydrater som vid LCHF, gärna kombinerat med fasta, minskar mängden tillfört och därmed även cirkulerande blodsocker och ger lägre HbA1c.

Under senare tid har Diabetisk Ketoacidos, DKA, hamnat i fokus. Det är en följd av insulinbrist hos diabetiker typ 1** och yttrar sig i att blodets pH-buffrande förmåga uttöms och dess pH sjunker under den normala nivån. Om detta inte behandlas kan tillståndet snabbt bli allvarligt, till och med dödligt.

De som kritiserar användning av LCHF för insulinbehandlade diabetiker, främst då typ 1, menar att den låga mängden kolhydrater i kosten kräver så små mängder insulin att det kan leda till insulinbrist och DKA. Insulinets akut viktigaste uppgift är att styra sin ”hormonella motsats”, glukagon. När man äter kolhydrater förbrukas en motsvarande mängd insulin och ”nettomängden” som blir kvar för att styra glukagonet blir långt mindre än doseringen antyder. Å andra sidan, äter man lågkolhydratkost kommer en större andel av insulinet att användas för regleringen av glukagonet.

Även protein kräver insulin och den som till äventyrs är rädd för att insulinmängden blir alltförför låg kan lägga till extra protein. De kan på sätt och vis liknas vid ”långsamma kolhydrater” då det tar rejält med tid från passagen in via munnen till dess de spjälkats färdigt. De aminosyror, proteiners byggstenar, som blir energi strippas på sitt kvävehaltiga innehåll och ger till mer än 3/4 glukos.

Lägg märke till den gråa ytan som omger medelvärdet. Runt 4.5 % finns en rejäl riskminskning, så stor att den sjunker under det grafen kan visa. Samtidigt finns de vars risk är nästan fördubblad vid samma HbA1c.

Min hypotes är att de som når ”bra” HbA1c med intensiv medicinbehandling och åtföljande blodsockersvängningar löper större risker än de med en ”mjuk blodsockerkontroll” med LCHF.

Om du finner felaktigheter eller oklarheter i det jag skriver så är jag tacksam om du meddelar mig i kommentar eller via mail till erik.matfrisk (at) gmail (dot) com


Fördjupad läsning för den vetgirige: Högt blodsocker skadar proteiner Lägg särskilt märke till att glykering drabbar mycket långsamomsatt kollagen, en viktig komponent i stödjevävnad som ben, hud, senor och blodkärlsväggar.

Metabol flexibilitet  Hur kroppen utnyttjar mer energi än blodsocker, t.ex. det fett du gärna vill bli kvitt.

*) Den monosackarid man mäter i blodet är glukos, men den överlägset mest glykeringsbenägna är fruktos, ena halvan av vanligt vitt socker samt den som ger frukter deras sötma.

**) Liknande situationer kan uppkomma vid allvarlig alkoholförgiftning, ketoacidos, och vid allvarlig störning i njurfunktionen, laktacidos. Den senare kan uppkomma i samband med behandling av diabetes typ 2 med Metformin. Se 4 fallrapporter i Läkartidningen.

I Västerbottens-Kuriren och Dagens Nyheter från 2013 fanns rubriker på temat att alkohol är rena bränslet för stordrickares hjärnor (DN). Följer man spåren bakåt mot källorna dyker en artikel i ScienceNews upp. Den är något mer utförlig, citaten nedan kommer därifrån.

Alcohol may give heavy drinkers more than just a buzz. It can also fuel their brains, a new study suggests.

Min tolkning: Alkohol kan försörja hjärnan med bränsle.

Long-term booze use boosts brain levels of acetate, an energy-rich by-product of alcohol metabolism… In the study, people who downed at least eight drinks per week also sucked more energy from acetate than their light-drinking counterparts.

Min tolkning: Lång tids användning av alkohol ökar hjärnans innehåll av acetat, en energirik molekyl från alkoholmetabolismen. I studien fann man att de som drack minst 8 drinkar per vecka fick mer energi från acetat än de som drack mindre

Både här, delvis även i studien, får man intrycket att alkohol/etanol är en unik källa till det acetat* man studerar. Dessutom underhåller man noggrannt den sedan länge (i fysiologi- och biokemikretsar) passerade åsikten att hjärnan uteslutande kräver glukos för att fungera.

Syntolkning av bild: En negativt laddad acetatjon. Med ytterligare en väteatom på rätt ställe vore det en ättiksmolekyl.

The extra energy may give heavy drinkers more incentive to imbibe, says study coauthor Graeme Mason of Yale University. And the caloric perk might help explain why alcohol withdrawal is so hard.

Min tolkning:  Graeme Mason vid Yale menar att den extra energin från alkohol kan ge stordrickare skäl att fortsätta och energitillskottet gör det svårt att sluta

Ska vi tro på det, att den extra energin från alkohol gör det svårt att avstå? Ibland är “forskare” så förundransvärt …, tja, vadå?

Acetate is best known as a chemical in vinegar. But when people drink a glass of wine or drain a can of beer, their liver breaks down the alcohol and pumps out acetate as leftovers. The bloodstream then delivers acetate throughout the body, including to the brain.

Min tolkning: Acetat är bättre känt som en del av vinäger. När man dricker alkohol metaboliseras den av levern som avger acetat till blodet som en restprodukt. Blodet levererar acetatet i hela kroppen, inklusive hjärnan.

Såhär fortsätter det artikeln ut, som att acetat har unika egenskaper och uteslutande beror av alkoholkonsumtion. Men låt oss ta en närsyntare titt in i kroppens metabolism.

Acetat i biokemiska sammanhang kopplas gärna till den jättestora bärarmolekylen** CoA (coenzym A), en central molekyl i ämnesomsättningen. Dess huvudsakliga uppgift är att överföra kolatomer till citronsyracykeln (Krebs cykel) inne i mitokondrierna (cellens “kraftverk”). Detta sker oavsett om energiråvaran är glukos, fettsyror*** eller ketoner. Acetat är alltså ingen unik kemikalie i kroppen.

Men varför blir den betydelsefull för alkoholkonsumenters hjärnor, mer för den som dricker mycket? För det är sant.

Alkohol har visserligen en del positiva effekter på kropp och psyke, men man når snabbt den gräns där den får påtaglig giftverkan och levern sätter därför in alla resurser på att metabolisera alkoholen så snart den dyker upp. Eftersom levern annars är en betydande leverantör av glukos från leverglykogenet så kan blodsockerhalten sjunka såpass att hjärnan får för lite. Hjärnans upptag av glukos ur blodet sker via passiva glukostransportörer vars sammanlagda kapacitet är beroende av hur många som finns på cellytorna. Regleringen av antalet som är i tjänst sker rätt långsamt och vid lågt blodsocker blir glukosinströmningen momentant lägre än behovet och det är här magin sker.

Hjärnan är inte alls unikt glukosberoende utan drivs med fördel av ketonen acetoacetat samt beta-hydroxybutyrat. Dessa produceras ur de tidigare nämnda acetyl-CoA i leverns mitokondrier, är vattenlösliga och transporteras med blodet till alla delar av kroppen inklusive hjärnan.

Ur studiens text:

Chronic heavy drinkers spend a large fraction of time with elevated blood acetate, and the greater brain acetate metabolism can potentially be induced by the habitual generation of acetic acid in the blood from alcohol, as observed previously in humans and other animals. Furthermore, chronic heavy drinking without eating can induce episodes of hypoglycemia , which have been shown to increase blood-brain monocarboxylic acid transport and therefore increase brain availability of acetate.

Min tolkning: Kroniska alkoholkonsumenter har ofta förhöjda acetatnivåer i blodet och hjärnans användning den som energikälla kan ökas genom de förhöjda ättiksyramängderna i blodet (med ursprung i leverns alkoholmetabolism). Intensiv alkoholkonsumtion utan att äta kan ge hypoglykemi (uttalat lågt blodsocker) vilket visats öka inströmningen av acetat genom blod-hjärnbarriären.

Denna studie visar att hjärnan, trots alkoholens i övrigt dominerande negativa verkningar, förser sig med energi från alternativa källor, i detta fall alkohol, efter samma mönster som LCHF-are utnyttjar redan i nyktert tillstånd, nämligen ketoner.

Kompletterande om ättiksyra: Cancerns energiförsörjning är dess svaghet


*) Acetat är inte en molekyl man kan framställa fristående, det t.ex. kan vara en lösning av etansyra i vatten där den till en del protolyseras (delas upp) till den sura hydroxyljonen H3O+ och acetatjonen CH3COO. Du har alldeles säkert etansyra hemma, antingen i form av ättika, vinäger, kanske en slatt vin som oxiderat och blivit surt.

**) I jämförelse med acetatet är bärarmolekylen CoA verkligen jättelik och komplicerad, men se den som en industrirobot som flyttar en pyttegrej.

***) Du vet att fett är en av kroppens energiråvaror, kanske även att fett byggs av fettsyror. Men vet du att ättika är den kortaste (minst antal kolatomer = 2) av alla mättade fettsyror?

Källa:  Increased brain uptake and oxidation of acetate in heavy drinkers Fulltext och gratis

Alzheimers sjukdom är den vanligaste demenssjukdomen och drabbar över 44 miljoner människor världen över. I Sverige insjuknar cirka 15 000 personer i sjukdomen varje år. Forskare vid Lunds universitet har nu hittat en pusselbit i gåtan om Alzheimers sjukdom, ett sockernedbrytande enzym som man tidigare inte visste fanns i hjärnan.

Källa: Enzym i hjärnan ny pusselbit i Alzheimers sjukdom

I västerländsk miljö med ständig tillgång till mat och välfyllda butiker är det nästan självklart att kolhydratrika livsmedel dominerar. De är vanligen billiga att producera och har ofta lång hållbarhet, anledningar som tilltalar livsmedelshandeln. Att Livsmedelsverket dessutom rekommenderar att vi ska äta mer än halva energiinnehållet i form av kolhydrater bidrar naturligtvis.

Alla våra celler behöver energi och den övervägande massan har förmåga att använda minst två alternativ. Hjärnan är ett viktigt organ som skyddas av blod-hjärnbarriären mot ämnen som kan skada. De energibärare som skall kunna passera måste dels vara tämligen små och vattenlösliga för att följa blodet genom barriären.

Hjärnans energiförbrukning är närmast konstant över dygnet, dessutom oberoende om vi tänker djupa tanker eller spenderar tid på facebook. Där finns inga egentliga energiförråd av betydelse vilket innebär att allt måste tillföras kontinuerligt utifrån. Under evolutionens lopp har det aldrig funnits garantier för att man har ständig tillgång till mat, långa svältperioder har inte varit ovanliga och redan korta avbrott i energileveranserna till hjärnan skulle vara förödande, den behöver ständigt cirka 500 kcal/dygn.

Alla celler i kroppen behöver energi för att fungera och överleva och hjärnans celler använder till största del socker som energikälla. Därför är det otroligt viktigt att sockerupptaget till hjärnan, men även de komponenter som bryter ned sockret inuti cellerna, fungerar korrekt.

Lyckligtvis fungerar hjärnan på olika drivmedel varav det ena, ketoner, har 25% högre verkningsgrad än alternativet, glukos. Knappa 25% av den kräver dock glukos, mindre än 30 gram. ”All” vanlig nutritionslitteratur brukar beskriva att hjärnan alltid kräver glukos vilket är fel. Påståendet grundas sannolikt på att kostråd är så kolhydratrika att hjärnan fungerar som en ”glukossänka” för att motverka de skadliga effekterna av ett förhöjt blodsocker. Citatet ovan från artikeln har därför avsevärd förbättringspotential.

Studier har visat att patienter som lider av Alzheimers sjukdom har nedsatt förmåga att ta upp sockret till hjärncellerna vilket gör att de inte kan få den energi de behöver och dör. Det är när stora mängder av nervcellerna i hjärnan dör som symptomen av Alzheimers sjukdom uppkommer. Det kan handla om minnesförlust, minskad orienteringsförmåga och andra förändrade kognitiva förmågor.

Om studiens slutsats att glukosmetabolismen hos Alzheimerspatienter är nedsatt och leder till celldöd bör det vara logiskt att testa en ketogen kost för att åtminstone inleda behandlingen. En annan hjärnskada, epilepsi, kan framgångsrikt behandlas med strikt ketogen kost för att motverka och i vissa fall helt eliminera krampanfall.

Det största hindret för att testa en sådan behandling är antagligen att den inte är patenterbar eller ger nämnvärd akademisk prestige. De 44 miljoner redan drabbade hinner kanske inte uppleva fördelarna, men de kommer att följas av så många fler.


Tidigare på MatFrisk Ketondrift ger hjärnan en superboost!,  Ketoner mot hjärnskador

Läs mer: Sugar’s ‘tipping point’ link to Alzheimer’s disease revealed

Autofagi är, som jag tolkar det, kroppens sophämtningssystem som jobbar med återvinning av aminosyror, förmodligen även mycket annat. Det krävs 2-3 hg av dessa aminosyror för att ersätta celler, enzymer och hormoner varje dygn och det går inte att äta sig till dessa mängder.

Källa: Artikel, Cancerfonden

Då alla celler, friska såväl som de med skadade mitokondrier (cancer), kräver aminosyror är det självklart att autofagin ”levererar” byggmateriel. På så sätt kan autofagin betraktas som skyldig till att hjälpa cancern. Dessutom bidrar den med den/de aminosyra som kan metaboliseras till dess energi.

Men, så vitt jag vet finns ingen process som aktivt ”stjäl” byggmaterial och energi från andra delar av kroppen, cancerceller får stå i kö som alla andra. Då de har enorma effektivitetsproblem i sin glukosanvändning kommer en ketogen kost att slå hårt mot dem och deras processer även om deras aminosyrametabolism kan hålla dem hjälpligt vid liv.

Via länken i artikeln diskuterar man pH i tumörer, men nämner inte att det är ”avfallet” från den usla glukosmetabolismen som ger denna effekt. Minns att det är mjölksyran som är biprodukten i den inledande anpassningen av glukos där pyruvat för en frisk mitokondries behov skapas. I cancerceller bildas mjölksyra i stora mängder, dels är blodflödet underdimensionerat i tumörer i förhållande till behovet och båda faktorerna gör att avfallshanteringen inte klarar sin uppgift, det blir ”surt” i tumören.

Så något om insulinets möjliga roll. Det finns långt fler insulinoberoende glukostransportörer (GLUT) i kroppen utöver de som styrs av insulin, GLUT4. Alla celler får därför ett grundbehov av glukos för sin överlevnad även om det för vissa celler inte täcker hela energibehovet. GLUT4 har en betydligt större transportkapacitet än de övriga, när den är aktiv är det som en lucka i botten av en vattentunna där de övriga är mer som olika stora hål i dess sidor. Typ.

Hur väl cancerceller är bestyckade med GLUT, särskilt 4-an vet jag inte, men med tanke på deras enormt stora glukosmetabolism är det troligt att mycket av den går via den insulinstyrda ”bottenluckan”. Också av det skälet är det logiskt att hålla insulinnivån låg genom uttalad LC, en ketogen kost! Att den dessutom inte bör innehålla mer än basbehovet av proteiner med en för människans behov väl anpassad aminosyraprofil säger sig självt då ungefär 4/5 av den energi som kommer av ett proteinöverskott kommer i form av glukos.

Vatten i glas

En uttalad form av ketogen metabolism sker vid några dagars vattenfasta då kroppen övergår till att utnyttja naturligt animaliskt fett från egna fettlager samt återvinner aminosyror från proteiner som har den aminosyraprofil vi människor behöver, de egna vävnaderna.

 

Så tänker jag, men det är ju bara en lekmans funderingar.

Det farliga på lång sikt för diabetiker typ 2 är höga blodsockervärden, vi är ”sockersjuka”.

Det akut livsfarliga för diabetiker typ 1, redan på kort sikt, är att brist på insulin innebär att alfacellerna i bukspottkörteln förlorar den styrning som kommer från insulin.

  • De Langerhanska öarna i bukspottkörteln innehåller bland annat insulinproducerande betaceller samt, runt om dem, glukagonproducerande alfaceller. Betaceller kan mäta blodsockerhalten och frisätta samt nyproducera motsvarande behov av insulin.
  • Alfacellerna är ”blinda” för det mesta så när som på att de tar intryck av det förbipasserande insulinet. Deras ”gaspedal” är i botten till dess insulinet säger till dem att lugna ner sig. Glukagonet signalerar till levern att frisätta glukos ur dess glykogenlager samt stimulerar även fettmetabolismen. Hos en ”frisk” människa utan insulinproblem är detta en utmärkt metod att förse vårt blod med energi från våra egna lager, t.ex. fettväven, även om vi inte har mat tillgängligt, t.ex. under natt och morgontimmar när det vanligen inte finns så mycket mat i vår tunntarm.

Hos den som saknar eller har för låg insulinproduktion fungerar inte regleringen av glukagonet och därför spinner fettmetabolismen på högvarv samtidigt som levern frisätter glukos, båda i flerfalt större mängder än kroppen kan använda.

Den oreglerade fettmetabolismen producerar förutom fria fettsyror även surgörande ketoner i en mängd som blodets buffertsystem inte klarar. Dess pH, ett av kroppens noggrannaste reglerade värden, sjunker så lågt att det blir livshotande. Detta kallas diabetisk ketoacidos, DKA. Samtidigt försöker kroppen göra sig av med överskottet av både glukos och ketoner genom att kissa ut överskotten vilket ger vätskebrist som i sig kan vara livshotande.

Av dessa skäl menar jag att diabetes typ 1 är en akut livshotande störning i fettmetabolismen.

  • 400px-insulin_penMan sköter diabetes typ 1 genom att göra det bukspottkörteln gör hos friska, mäter blodsockret och injicerar insulin efter behov.
  • Detta blir betydligt lättare om man äter lågkolhydratkost, LCHF, då man slipper parera för att maten ger stora glukosvariationer i blodet.