Arkiv för kategori ‘SFA – mättade fettsyror’

Äggets roll i maten har länge varit och är fortfarande omtvistad. Kostråden skiljer sig markant åt mellan olika länder. Äggets kolesterol ökar risken för hjärt- kärlsjukdom, heter det. I synnerhet för diabetiker. I Sverige har bilden med tiden blivit mer nyanserad. Hjärt- lungfonden konstaterar att ”man inte behöver vara rädd för att äta måttligt med ägg”. Men vad är måttligt? Knappast de tolv eller ännu fler ägg i veckan under ett helt år, det vill säga drygt 600 ägg. Men det är precis vad australiska forskare har studerat.

Källa: Diabetesportalen

Är det rimligt att dra långtgående slutsatser om äggens betydelse på grund av utfallet i denna studie? Inte för att jag är missnöjd med att man anser ägg är ofarligt, men de gör det med ovetenskapliga metoder. In med mer ingenjörer som har bättre förutsättningar att förstå att orsak och verkan måste kopplas till varandra på ett vettigare sätt än i denna grupplaboration.

De tolv som gjort den delstudie vars abstract (från 3 månader och framåt) jag läst jämförde fortsatt lågkonsumenter av ägg (< 2 ägg per vecka) med högkonsumenter (≥ 12 ägg per vecka) (tillkommande begränsningar redovisas nedan). Märk väl att de själva skriver < 2, alltså i praktiken max. 1 helt ägg i veckan! Nu kan man ju äta produkter som innehåller ägg och på så sätt få i sig 1,999 ägg, upp till nästan 2. Men hur genomfunderat är det att avgränsa ett antal ägg på det sättet?

Nåja, även om jag inte tycker att 12 ägg i veckan är så mycket att det kan klassas som hög konsumtion ens bland diabetiker typ 2 så kanske Australien är så äggskrämda att man inte vågade gå högre. Trots allt skiljer det > 6 gånger mellan de två grupperna. (Jag väljer > 6 snarare än ≥ 6, varför?)

Some country guidelines recommend that people with type 2 diabetes (T2D) limit their consumption of eggs and cholesterol. Our previously published 3-mo weight-maintenance study showed that a high-egg (≥12 eggs/wk) diet compared with a low-egg diet (<2 eggs/wk) did not have adverse effects on cardiometabolic risk factors in adults with T2D.

Källa: Effect of a high-egg diet on cardiometabolic risk factors in people with type 2 diabetes: the Diabetes and Egg (DIABEGG) Study—randomized weight-loss and follow-up phase –The American Journal of Clinical Nutrition, https://doi.org/10.1093/ajcn/nqy048 – Published: 07 May 2018

Detta är fortsättning av en tidigare publicerad studie som siktade mot att deltagarna skulle bibehålla sin vikt. Här delades deltagarna till att vara lågkonsumenter av ägg (< 2 ägg/vecka) medan andra var högkonsumenter (≥ 12/vecka). Ingen kontrollgrupp tycks finnas.

Participants with prediabetes or T2D (n = 128) were prescribed a 3-mo daily energy restriction of 2.1 MJ and a macronutrient-matched diet and instructed on specific types and quantities of foods to be consumed, with an emphasis on replacing saturated fats with monounsaturated and polyunsaturated fats. Participants were followed up at the 9- and 12-mo visits.

Min tolkning: 128 prediabetiker eller diabetiker typ 2 instruerades att fortsättningsvis äta 500 kcal mindre av en ”makronutrientmatchad kost” med fokus på att ersätta mättade fetter med enkel– och fleromättade fetter.

Man föreskriver alltså såväl varierande äggkonsumtion som energibegränsning samt byte av fett-typer Hur ska man i denna röra kunna skilja ut vilken eller vilka faktorer som påverkar utfallet?

From 3 to 12 mo, the weight loss was similar (high-egg compared with low-egg diets: −3.1 ± 6.3 compared with −3.1 ± 5.2 kg; P = 0.48). There were no differences between groups in glycemia (plasma glucose, glycated hemoglobin, 1,5-anhydroglucitol), traditional serum lipids, markers of inflammation (high-sensitivity C-reactive protein, interleukin 6, soluble E-selectin), oxidative stress (F2-isoprostanes), or adiponectin from 3 to 12 mo or from 0 to 12 mo

Min tolkning: Mellan 3 till 12 månader var viktnedgången likvärdig mellan låg- och högkonsumenter av ägg. Övriga typiska ”diabetesmarkörer” var också likvärdiga.

Då det gäng som står som författare knappast innehåller tänkare som skulle kunna uppgradera till ingenjörer är det möjligen förklaringen till att man utgick från att en daglig reduktion på 500 kcal nödvändigtvis skulle resultera i viktnedgång (”weight loss”). Sett över hela gruppen högkonsumenter av ägg minskade vikten med 3,1 kg, men variationen var betydande på individnivå. Där fanns minst 1 som gick upp 3,2 kg samtidigt som någon minskade med 9,4 kg. Bland lågkonsumenter var siffrorna -3,1, +2,1 och -8,3 kilo. Jag brukar hacka på att den statistiska nivån är usel för liknande analyser när p = 0,95*, här är p = 0,48!

People with prediabetes or T2D who consumed a 3-mo high-egg weight-loss diet with a 6-mo follow-up exhibited no adverse changes in cardiometabolic markers compared with those who consumed a low-egg weight-loss diet. A healthy diet based on population guidelines and including more eggs than currently recommended by some countries may be safely consumed.

Min tolkning: Enligt denna studie mättes inga negativa effekter hos prediabetiker och diabetiker typ 2 beroende på hög äggkonsumtion under 9 månaders uppföljning. En högre äggkonsumtion än rekommenderat i en del länder kan betraktas som säkert.

I fulltexten som jag inte läst och inte har lust att spendera 35€ på kanske det finns ytterligare information som skulle mildra min kritik. Skulle högkonsumtion av ägg möjligen antyda små men statistiskt insignifikanta hälsoskillnader? Fanns det någon kontrollgrupp?


*) P = 0,95 innebär att risken för att utfallet är fel av slump är 1/20. P = 1 innebär absolut säkerhet, något man aldrig kan nå i dessa sammanhang. Vid kast med mynt kommer med tiden den statistiska sannolikheten för utfallet krona att närma sig 0,5.

Industrially-produced trans fats are contained in hardened vegetable fats, such as margarine and ghee, and are often present in snack food, baked foods, and fried foods. Manufacturers  often use them as they have a longer shelf life than other fats. But healthier alternatives can be used that would not affect taste or cost of food.

Min tolkning: Industriellt framställda transfetter finns i härdade vegetabiliska fetter såsom margarin och ghee och finns ofta i mellanmålsprodukter (snack food), bakad och friterad mat. Tillverkare använder dem ofta då de har längre hållbarhet än andra fetter men hälsosammare alternativ kan användas som inte påverkar smak eller kostnad.

Källa: World Health Organisation

Industriframställda transfetter/transfettsyror är direkt olämpliga och bör snarast fasas ut, något Livsmedelsverket inte har stake nog att genomdriva. Men WHO:s argument i citatet ovan är långt ifrån klockrena. Du som har kunskaper om transfett, smör och ghee har säkert redan förstått vad min kritik gäller och kan lugnt surfa vidare.

  • Fetter byggs av en sammanhållande glycerolmolekyl med tre kopplade fettsyror, sinsemellan lika eller olika. En fettmolekyl kallas därför triglycerid alternativt triacylglycerol.
  • Fettsyror är kolkedjor som kan vara mättade, enkel- eller fleromättade. Detta innebär att kolkedjorna är ”fullbestyckade” med väteatomer alternativt saknar ett eller flera par av dem.
  • En mättad fettsyra är rak men lätt flexibel.
  • I naturligt förekommande fettsyror kommer de saknade väteatomparen från samma sida (cis-) av kolkedjan. Kolkedjan böjer sig och fettet som helhet blir mjukare eller till och med lättflytande trots att kolkedjan kan vara mycket lång.
  • Om de saknade väteatomparen kommer från motsatta sidor (trans-) av kolkedjan blir resultatet en ”knick” snarare än en böj. Den dubbelbindning som uppstår gör också att en transfettsyra dras samman och blir något kortare än en mättad fettsyra med samma antal kolatomer.
  • Det finns anledning att misstänka att framför allt industriellt framställda transfetter är negativa för hälsan.
  • Under många år brukade Livsmedelsverket bunta samman enkel- och fleromättade transfettsyror med ett av sina hatobjekt, mättade fetter, till ”transfetter och mättade fetter”. Bland annat LCHF-are påpekade många gånger denna uppenbart felaktiga inställning och numera förekommer det sällan eller aldrig. Kan ju också bero på att tidigare industrikopplingar har tappat inflytande inom SLV.
  • Det finns ”naturliga transfetter” i mjölk från idisslare men de tycks inte påverka hälsan negativt. Idisslare har en bakterieflora som skapar dessa transfetter.

Efter publiceringen har jag fått anledning anledning att komplettera, något som finns mot slutet.

Mycket som händer i världen har över- eller underskott på resurser i samverkan med ekonomiska och/eller militära incitament, så även hitte-på-smörsurrogatet margarin.

Margarine is an imitation butter spread used for flavoring, baking, and cooking. Hippolyte Mège-Mouriès created it in France in 1869 when responding to a challenge by Emperor Napoleon III to create a butter substitute from beef tallow for the armed forces and lower classes. First named oleomargarine from Latin for oleum (beef fat) and Greek for margarite (pearl indicating luster), it was later named margarine. Källa: Wikipedia

Märk väl att den ursprungliga målgruppen var ”militären och lägre klasser i befolkningen”. Med tiden fann man att billiga vegetabiliska fetter, till och med oljor, kunde behandlas, härdas, så att de blev fastare och påminde om smör i konsistensen.

Härdningen kallas av kemister för hydrogenering (hydro syftar på väte) vilket innebär att man under högt tryck, värme och med nickel som katalysator tillför vätgas. Detta tvingar in väteatomer i kolkedjorna och eliminerar en del av dubbelbindningarna. Fettblandningen som helhet får färre omättnader, blir mer mättad. Denna ändring är oproblematisk då det saknar betydelse hur ett mättat fett uppkommer.

De ursprungliga dubbelbindningarna, som var för sig är svagare än en enkelbindning, blir instabila vid den höga temperaturen och kolkedjorna vrider sig slumpmässigt. När tillverkaren är nöjd och sänker temperaturen kommer en del av dessa vridna dubbelbindningar att ”fastna” i transkonfiguration vilket också bidrar till fettblandningen blir fastare men även ger de oönskade transfettsyrorna.

Industrially-produced trans fats are contained in hardened vegetable fats, such as margarine and ghee…” är ett fel i WHO:s argumentering då ghee är ett smörfettskoncentrat utan sitt ursprungliga vatten- och proteininnehåll. Det krävs ingen avancerad metod, bara att värma smör till dess det smälter och börjar skikta sig i en fettfraktion som flyter på protein och vatten. Ta vara på fettet så har du ghee med oerhört lång hållbarhet, även i värme. Detta är en vanlig metod i varma och fuktiga klimat som t.ex. i Indien. Transfett i ghee beror uteslutande på de naturligt förekommande transfetterna i komjölken.

Att produkter med industriframställda transfetter anses ha längre hållbarhet än de med äkta smör beror sannolikt på att smöret innehåller proteiner som begränsar hållbarheten, inte att margarinets fett är hållbarare.

hälsosammare alternativ kan användas som inte påverkar smak eller kostnad.” är ytterligare en övertolkning från WHO. Till att börja med är påståendet ”hälsosammare alternativ” starkt ifrågasatt. Att ”kostnaden inte påverkas” är sant såtillvida att hitte-på-fetter numera måste prissättas lågt för att hitta köpare. Intressant är att dessa fettsurrogat i grunden är både smak- och färglösa jämfört med smör. Hur skulle margarinförsäljningen påverkas om tillsatser av färg– och/eller smaktillsatser begränsades?


Efter publiceringen har jag fått anledning anledning att komplettera med följande:

  • Vid härdning av en enkel- eller fleromättad fettsyra kan/kommer en del av de tidigare cis-bindningarna att slumpmässigt vrida sig 180 grader, en eller flera gånger. Sker det ett udda antal gånger blir det en trans-bindning, vid ingen eller jämnt antal förblir det en cis-bindning.
  • Enkelbindningar mellan mättade kol har större bindningsenergi än enskilda dubbelbindning och man höjer knappast processtemperaturen så högt att de påverkas. Om så ändå sker gör det måttligt stor skillnad.
  • Dubbelbindningar byter inte plats i kolkedjan i samband med härdningen. Cis- och trans- anger uteslutande att kolkedjan böjer sig resp. det blir en ”knick” på en i huvudsak rak del av kedjan.
  • Dubbelbindningar ”nybildas” inte under härdningen, till det krävs enzymer, desaturaser. De arbetar vid måttliga temperaturer, långt från härdningens hetta.
  • Med anledning av att SLV under många år buntade samman ”mättade fetter och trans-fetter” vill jag framhålla att en delvis härdad fettsyra fortfarande är en enkel- eller fleromättad fettsyra alldeles oavsett om den eller de kvarvarande dubbelbindningarna är av cis- (”normal”) eller trans-konfiguration.
  • Om en fettsyra är ”fullhärdad” är alla dubbelbindningar ersatta med enkelbindningar och den resulterande fettsyran är helt identisk med en ”naturlig” fettsyra med samma antal kol.

Kommer du att beröra betydelsen av fettsyrornas längd?

Använder du begrepp som mättade fetter och fleromättade fetter utan att egentligen veta något om bakgrunden? Utom att de mättade är ”farliga” och de fleromättade är ”nyttiga”, förstås. Detta är en länksamling till tidigare blogginlägg på MatFrisk där fett och fettsyror spelar en central roll.

Fett #1: Fettsyror, en introduktion
Oavsett om du är positivt eller negativt inställd till fett som del i mat eller kropp så är det en fördel att känna till den kemiska bakgrunden. Om du tar till dig eller själv använder påståenden som ”undvik mättade fetter, de är farliga” och ”ät mer fleromättade fetter, de är jättenyttiga” så är jag övertygad om att du kan vidga dina perspektiv avsevärt. Det sker inte i en handvändning, därför blir det flera inlägg.

Fett #2: Raka och krökta fettsyror
Dietister och andra med konventionella kunskaper om mat förfasar sig ofta och gärna över att LCHF-are ”utesluter en hel näringsgrupp” och därför äter ”ensidigt och näringsfattigt.” Till skillnad från kolhydrater som huvudsakligen bara finns i tre varianter där glukos är den enda som kroppen direkt kan utnyttja är fettsyror mycket varierade i sin sammansättning, för att inte tala om fetter och ämnen de bildar i kroppen.

Fett #3: Fettsyrors längd och omega-begreppet
Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I #1 visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära, delen av molekylen medan karboxylgruppen är polär och ”umgås” väl med vatten. Hos korta och i någon mån medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

Fett #5: Bygg fett av fettsyror och glycerol
I inlägg 1# – #4 har jag berättat rätt detaljerat om fettsyror. Logiskt sett borde detta vara inlägg #3,5 för att förklara hur fetter byggs upp av sina beståndsdelar och koppla samman dem till fetter.

Fett #4: Hur du bygger din egen fettväv
Fettväv byggs av tre fettsyror sammanlänkade med glycerol till triglycerider lagrade i en stor droppe i fettceller. Dessa är specialiserade och har t.ex. mycket få mitokondrier som används för att skapa ATP, kroppens grundläggande energivaluta. Cellkärnan med sitt innehåll av DNA är förvisat ut i periferin (se bilden till vänster). Genom sitt spartanska innehåll är fettväv normalt är nästan vit. Resten av fettväven utgörs i huvudsak av blodkärl och blod. Detta gör att energitätheten i fettväv är ungefär 7500 kcal/kg, klart lägre än i rent fett.

Ett uns av fettkemi i anslutning till muskel- och fettceller
Våra celler använder ATP, adenosintrifosfat, samt i viss utsträckning ADP, (adenosindifosfat) för sin energiförsörjning. Dessa produceras i stor mängd, i storleksordningen halva till hela kroppsvikten per dygn, i mitokondrier som finns i alla celler. Fettsyror, ketoner och glukos är några energibärare som cellerna tar upp, processar/förädlar för att sedan mata mitokondrierna. I några få av kroppens celltyper är det enbart glukos som fungerar, de röda blodkropparna, delar av njurarna samt en mindre del av hjärnan (uppskattningsvis 1/4 – 1/3 av dess energibehov). Även cancerceller har ett strikt glukosbehov, då deras mitokondrier vanligen är skadade och overksamma. Det senare är särskilt olyckligt då startsignal för apoptos, programmerad celldestruktion, utgår från fungerande mitokondrier.

Nytta av korta fettsyror i tjocktarmen, del 1
Jag har hittat en studie som fascinerar mig. Den är intressant och, som jag ser det, logisk och faktarik. Den kan inte kallas lättillgänglig, man bör vara en nörd och ha gott om tid för att uppskatta den. För att försöka göra innehållet någorlunda tillgängligt planerar jag att dela upp innehållet i flera blogginlägg, hur många får vi se.

Korta fettsyror i tjocktarmen, del 2
The development of the intestinal ecosystem is crucial for many gastrointestinal functions and body health. The intestinal ecosystem essentially comprises the epithelium, immune cells, enteric neurons, intestinal microflora, and nutrients.

Min tolkning: Utvecklingen av tarmarnas ekosystem är avgörande för mag- och tarmkanalens funktion och vår hälsa. Ekosystemet utgörs av dess avgränsningar (epithelium), immunceller, nervsystem, mikroflora och näringsämnen.

Upptag av korta fettsyror, del 3
SCFA (Kortkedjioga fettsyror) tas upp, till skillnad från de flesta andra näringsämnen, i både tunn- och tjocktarm. Provrörsstudier (in vitro) har visat att koleratoxin som förorsakar akuta diarréer motverkas genom uppvätskning i kombination med resistent stärkelse. Det senare är ett råmaterial som tjocktarmens bakterier använder för att producera små men betydelsefulla mängder av n-butyrat (smörsyra, en SCFA).

Butyrat och ulcerös colit, del 4
Ulcerös colit är en inflammatorisk sjukdom i tjocktarmen. Som namnet anger förorsakar den (blödande) sår som dels hindrar tjocktarmens funktion, dels ger blodförluster som kan vara mycket allvarliga. UC uppträder i skov med varierande frekvens och varaktighet och med rätt skötsel kan man leva med den under lång tid utan att den blir livshotande. Även här är SCFA involverat.

Är det stor skillnad mellan glukos och en kort fettsyra?
Dietister och andra nutritionsexperter är mycket tydliga när man tar avstånd från fett som huvudsaklig näringskälla, särskilt när det kommer till mättade fetter med animaliskt ursprung. Ibland tror jag att de inte är nämnvärt bekanta med grundläggande kemi. Som illustration har jag tagit en rak variant av monosackariden glukos samt en mättad fettsyra med samma antal kol.

Varför är fett energirikare än kolhydrater?
”Alla vet” att fett innehåller 9 och kolhydrater 4 kcal/gram. Men hur många vet vad det beror på? Båda består enbart av grundämnena kol (C), väte (H) och syre (O) men i olika proportioner och strukturell uppbyggnad.

Fettväv byggs av fettsyror sammanlänkade tre och tre med glycerol till triglycerider lagrade i en stor droppe i fettceller. Dessa är specialiserade och har t.ex. mycket få mitokondrier som används för att skapa ATP, kroppens grundläggande energivaluta. Cellkärnan med sitt innehåll av DNA är förvisat ut i periferin (se bilden till vänster). Genom sitt spartanska innehåll är fettväv normalt är nästan vit. Resten av fettväven utgörs i huvudsak av blodkärl och blod. Detta gör att energitätheten i fettväv är ungefär 7500 kcal/kg, klart lägre än i rent fett.

Kompletta fettmolekyler kan inte passera cellmembran*, de är för ”storrömt”. Vanligen spjälkas först de två yttre fettsyrorna loss (hydrolyseras**) av ett enzym medan den i mitten kan vara kvar i en monoglycerid***, där glycerolen är bundet till den kvarvarande fettsyran. Därefter kan de passera in i fettceller och åter kombineras till fettmolekyler.

De enskilda fettsyrorna i det som kallas TG (triglycerider) i labbrapporters ”blodfetter” kan ha annat ursprung än fettet i maten, de kan nyproduceras (de novo lipogenesis) i levern med glukos/kolhydratöverskott som grund.

I blodet finns inget som entydigt identifierar ursprunget för en enskild fettsyra och fettväv byggs av överskott som finns i blodet. Kroppens egen produktion av fettsyror begränsas till de med max 16 eller 18 kol, palmitin– och stearinsyra. Dessa kan sedan desatureras där ett par väteatomer avlägsnas av enzymer, fettsyran får en omättnad och den böjda form som gör den ”rinnigare”. Stearinsyran blir oljesyra och smältpunkten sjunker drastiskt från ungefär 69 C till 13-14 C.

Korta (2-5 kol) och medellånga (6-10/12 kol) fettsyror från mat går raka spåret från upptag i tarmen via blodet och till slutförbrukarna, vanligen muskler. De når därför fram och förbrukas snabbt och bidrar därför föga eller inte alls till bildningen av vare sig TG eller fettväv. När längre fettsyror tagits upp ur tarmens innehåll lastas de i stora ”transportfarkoster”, kylomikroner/chylomikroner, och transporteras vidare i lymfsystemet. Cirkulationen i lymfsystemet är långsam då det inte finns någon egentlig ”pump” liknande blodsystemets hjärta. Med tiden når de en plats där de flyttas över till blodet och vidare till lever, muskler eller fettväv.

Intressant nog har kolhydratätare efter en nattfasta påtagligt större mängder fett i blodet än LCHF-are. Detta syns på labbvärdet TG (triglycerider) som transporteras i lipoproteinet VLDL (Very Large Density Lipoprotein). Allt eftersom VLDL delar ut sitt innehåll minskar det i storlek till IDL (Intermediate Density Lipoprotein)

Min hypotes är att fettväv byggs med protein-, kolhydrat– och/eller fettöverskott som grund. Lägg märke till det gemensamma i påståendet: ÖVERSKOTT av energibärare i blodet!

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror  Fett #3: Fettsyrors längd och omega-begreppet


*) Den rådande uppfattningen är att fettsyror och monoglycerider kan passera rakt genom cellmembranen men tecken antyder att det kan finnas alternativa transportmöjligheter, vi får se med tiden.

**) Hydrolysering innebär att en vattenmolekyl ”petas in” i skarven mellan glycerol- och fettsyramolekylen. Den delas upp i sina delar och återställer de ursprungliga OH-grupperna. Hydro syftar på vatten och lysera på att det faller isär, separerar.

***) Om du tittar på innehållsförteckningar på processad mat, särskilt lågfettvarianter med högt vatteninnehåll, är sannolikheten stor att du ser att den innehåller ”mono- och diglycerider”. Dessa är ”nästanfetter” och 1/3 respektive 2/3 av deras beståndsdelar av fettsyror borde redovisas i fettinnehållet. Dessa ”nästanfetter” används används av industrin när man producerar hittepå-fetter då de lätt umgås med fett och samtidigt binder skapligt stora mängder vatten via de oanvända OH-grupperna på glycerolmolekylen.

Fettsyrors längd har avgörande betydelse för hur kroppen hanterar dem. I första delen av serien visar jag hur en fettsyra byggs upp av en metylgrupp, en kolkedja och slutligen en karboxylgrupp. Metylgruppen och kolkedjan utgör den ”feta”, opolära*, delen av molekylen medan karboxylgruppen är polär* och ”umgås” väl med vatten. Hos korta och medellånga fettsyror dominerar den polära egenskapen och de kan följa blodet utan hjälp.

När fett nått förbi magsäcken/tolvfingertarmen är det emulgerat som ytterst små fettdroppar av gallan. Ungefär som diskmedel löser upp det feta i disken. När fettdropparna når tarmslemhinnan bearbetas de av lipaser, enzymer som delar upp fettmolekylen i beståndsdelar så att de kan passera in genom cellagret. Jag återkommer till det i ett senare inlägg.

  • De långa fettsyrorna återkombineras till fettmolekyler och packas i vattenlösliga transportfarkoster, kylomikroner, som går in i lymfsystemet. Då det inte finns någon ”motor” som driver på går det långsamt, men förr eller senare hamnar de i blodet för vidare befordran.
  • De korta och medellånga lotsas direkt till blodet och når snabbt olika slutförbrukare som t.ex. muskel– och leverceller. De är utmärkta som ”snabb energi” och lagras inte i fettväv.

Repetera, eller kan du tillräckligt? Fett #1: Fettsyror, en introduktion   Fett #2: Raka och krökta fettsyror

SCFA, Short Chain Fatty Acid, kortkedjiga fettsyror

Jag syftar på de med sammanlagt 2 till 5 kolatomer men indelningar som denna är inte självklara och olika åsikter finns. Effekten av den feta, hydrofoba* kolkedjan i förhållande till den hydrofila* karboxyländen avgör hur lätt den ”umgås” med vatten. Bland SCFA är det den hydrofila karboxyländen som med god marginal bestämmer.

  • Bakterier i tjocktarmen klarar att bryta ner fibrer och vissa andra andra kolhydrater som resistent stärkelse, RS. Ur dessa producerar de 4 korta mättade fettsyror, ättiksyra (2 kol, 60% av mängden), propansyra (3 kol, 25%), butansyra (smörsyra, 4 kol, 15%) samt en spårmängd av valeriansyra (5 kol). Dessa försörjer tarmen med energi, vilket förutsätter att fettsyrorna kan färdas i den vattenrika och därför polära* miljö som tarminnehållet utgör.

Om man äter/dricker SCFA utgör de en snabb energikälla om än inte helt oproblematisk. Ättiksyran, t.ex., måste spädas rejält för att bli drickbar och en varning är på plats då den fräter på tandemaljen. Skölj därför noga, men dröj med tandborstningen så du inte sliter på tandemaljen. Äppelcidervinäger är ett rimligt alternativ att prova för den nyfikne.

Som framgår av namnet är smör en källa (eng: butter) till butansyra. Här är risken för syraattacker på tänderna obefintlig då den sura änden av fettsyran är ”upphakad” av en glycerolmolekyl så länge det är ett fett.

MCFA, Medium Chain Fatty Acid, medellånga fettsyror

Detta är fettsyror med 6-10/12 kolatomer. Fortfarande dominerar karboxyländens förmåga att umgås med vatten, de passerar in genom tunntarmens epitel direkt till blodet och vidare till celler som har behov av dem. Kokosolja är ett utmärkt exempel.

Övriga fettsyror

Allt eftersom den ”feta” delen av fettsyran (metyländen + kolkedjan) börjar dominera försvinner möjligheten att på egen hand följa blodet och en långsammare omväg tar över logistiken. Repetera gärna början av inlägget om du inte minns varför.

Omega-begreppet

Metyländen betraktas av kemister som slutet av en fettsyra och kallas därför omegaänden. (Omega är den sista bokstaven i det grekiska alfabetet). I nutritionssammanhang har den en avgörande betydelse och vissa fettsyror beskrivs och får sina namn med utgångspunkt från omega-änden.

Lägg märke till minustecknet mellan omega och 3, 6 eller andra siffror som kan finnas! Det är inte ett bindestreck utan anger att man räknar bakåt i kolkedjan, med utgångspunkt från kolet i metyländen. Ibland skriver man n-3 eller ω-3

Omega-3, n-3, ω-3

De har sin första dubbelbindning mellan kolatom 3 och 4, räknat från metylgruppen, det finns vanligen fler med två enkelbindningar emellan. Ju fler dubbelbindningar desto mer kröker sig fettsyran mot en spiralform om den är riktigt lång. Då omega-3-fettsyrors krökningar börjar tidigt i kedjan finns det, för en given kolkedjelängd, plats för flera vilket ger fettsyran en spiralform och väldigt rinniga oljor med låg smälttemperatur. Växelvarma djur i mycket kall miljö, t.ex. fiskar i Norra Ishavet, har särskilt mycket omega-3-fettsyror för att alls kunna röra sig i det kalla vattnet vid temperaturer vid och under noll.

Omega-6, n-6, ω-6

Dessa är till en början raka med sin första dubbelbindning mellan kolatom 6 och 7, fler finns vanligen med två enkelbindningar emellan. Vid lika antal kol har omega-6-fettsyror en större andel rak kolkedja än omega-3 vilket gör dem något mindre rinniga. Vegetabiliska oljor från varma miljöer har en större andel omega-6 då de växter de kommer från annars skulle sloka svårt i värmen.

Essentiella fettsyror

Vi kan själva tillverka mättade fettsyror upp till 16-18 kol (uppgifterna varierar mellan olika källor) och ur dessa även enkelomättade med hjälp av enzymer som heter desaturaser**. Vi har däremot inte de speciella desaturaser som kan skapa dubbelbindningar så nära metyländen som vid kol 6 eller tidigare. Dessa måste vi därför få från det vi äter och kallas därför essentiella, livsnödvändiga. Det är omega-3-fettsyran alfa-linolensyra och omega-6-fettsyran linolsyra, råmaterial som kroppen bygger vidare på.


*) Hydro– syftar på vatten, –fil och –fob har betydelser som sannolikt alla förstår. Hydrofil innebär ungefär ”vattenälskande” och hydrofob ”vattenskyende”. Med korrekt terminologi: hydrofila ämnen löser sig i polära och hydrofoba i opolära lösningsmedel. Vatten och därmed blod är polära lösningsmedel.

**) Desaturaser plockar bort två väteatomer, en från vardera näraliggande kol i kedjan. De är specialiserade och kan till exempel räkna. Mer om detta i ett senare inlägg.

Dietister och andra med konventionella kunskaper om mat förfasar sig ofta och gärna över att LCHF-are ”utesluter en hel näringsgrupp” och därför äter ”ensidigt och näringsfattigt.”*

Fettsyror är mycket varierade i sin sammansättning, för att inte tala om fetter och ämnen de bildar i kroppen.

Har du inte läst #1, introduktionen till fettsyror, så föreslår jag att du börjar där.

Mättade fettsyror, SFA (Saturated Fatty Acid)

De kännetecknas av en kolkedja där alla bindningar mellan kolatomer är enkelbindningar och alla kolatomer har vardera två väteatomer är fullbesatt, mättad med väte.

Bilden visar en mättad fettsyra med 4 kolatomer, butansyra 4:0, även kallad smörsyra. 4 står för antal kol och 0 antal dubbelbindningar. Metylgruppen CH3 längst till vänster inleder den feta delen av molekylen, här 3 kol lång, medan karboxylgruppen COOH till höger kan koppla till andra molekyler. Den färgmarkerade väteatomen sitter rätt löst och kan spontant falla bort, binda till en vattenmolekyl och bildar då en H3O+, en oxoniumjon (även kallad hydroniumjon) som kännetecknar syror vilket motiverar beteckningen fettsyra.

Enkelomättade fettsyror, MUFA (Mono Unsaturated Fatty Acid)

En kolkedja med exakt en dubbelbindning innebär även ett par väteatomer färre och kallas enkelomättad.

Bilden visar ett annat sätt att illustrera molekyler, lite mer som de faktiskt ser ut i extrem närbild. Här syns att den har volym och inte är platt som mina schematiska teckningar.

Fleromättade fettsyror, PUFA (Poly Unsaturated Fatty Acid)

Fettsyror med två eller fler dubbelbindningar kallas fleromättade. En logisk följd är att för var och en försvinner dessutom ett par väteatomer med konsekvenser vi berör senare. För att underlätta förståelsen kommer jag att försöka placera karboxyländen till höger i bilden så långt det är möjligt.

 

Cis och Trans-former

En kolkedja har en mycket strukturerad uppbyggnad och den överlägset vanligaste omättnaden i en naturligt förekommande kolkedja innebär att de två väteatomer som saknas har suttit jämte varandra ”på samma sida”, kolkedjan kröker sig då i Cis-form. Om det finns fler omättnader i kedjan sitter de vanligen med två enkelbindningar emellan. En mindre vanlig variant, där dubbelbindningarna sitter med en enda enkelbindning emellan kallas konjugerade fettsyror.

Om de saknade väteatomerna i en dubbelbindning kommer parvis från vardera sidan kallas det trans-form och kedjan får en knick snarare än en krök. I naturen är transfettsyror förhållandevis ovanliga men bakterier hos idisslare gör just den sortens kolkedjor efter speciella mönster.

 

Industrier försöker ”förädla” rinniga vegetabiliska oljor så att de blir mer tjockflytande och härmar smör. De har under lång tid tillsatt nickelspån som katalysator, hettat upp oljan under högt tryck samtidigt som man tillför vätgas. Trycket och värmen gör att väteatomer formligen tvingas in i omättnader. Samtidigt rör sig kolatomer i dubbelbindningar sinsemellan och ren slump gör att naturligt krökta Cis-bindningar kan vridas om till förhållandevis rak Trans-form. Båda effekterna gör oljorna gradvis mer trögflytande och till slut fasta. De växtoljor man använder är långkedjiga och för att de inte ska bli stenhårda redan vid rumstemperatur avbryts härdningsprocissen i förtid vilket lämnar kvar en blandning av cis- och transdubbelbindningar.

Gemensamt för dubbelbindningar är att kolatomerna dras något tätare tillsammans men även att vardera bindningen är ”svagare” än en enkelbindning. Den ”öppna” Cis-formen är känsligare för angrepp utifrån av fria radikaler något som knappt händer enkelbindningar och förhållandevis sällan för transdubbelbindningar. I atom- och molekylskala är de enskilda bindningarnas form och placering helt avgörande för hur en fettsyra beter sig. En fettsyra med en trans-bindning är stelare och kortare än en mättad fettsyra med samma antal kol, den kan ”lura sig in” men aldrig fullt ut ersätta en mättad fettsyra.

Den ökade mättnadsgraden och de stela trans-formerna bidrar båda till att rinniga och billiga växtoljor blir fastare fetter som kan säljas som smörsurrogat och med högre vinst. Tidigare var det mycket vanligt med transfetter i industritillverkade smörsurrogat, men massiv kritik resulterade i att tillverkarna självmant minskade användningen i slutanvändarprodukter.

Livsmedelsverket, som borde ha varit självklara att rensa upp i röran, har mesigt stått vid sidan och knappt deltagit i debatten. De fick utstå mycket förlöjligande när man, för att alls kunna redovisa skadliga effekter, talade om ”transfetter och mättade fetter” som en sammanhållen grupp. Lika fel som man numera gör genom att tala om ”frukt och grönt”.


*) Energin i kolhydrater kommer uteslutande från monosackarider; glukos, fruktos och galaktos. I mat kan de finnas i väsentligt olika sammansättningar, men för att alls absorberas måste de först spjälkas till just de monosackariderna. Det betyder att den som äter enligt konventionella rekommendationer får hälften eller mer av sin energi från enbart de tre monosackariderna. Dessa är renons på egentlig näring och kan med goda skäl kallas tomma kalorier. Hur ”varierat” och ”närande” är det på en skala?

Oavsett om du är positivt eller negativt inställd till fett som del i mat eller kropp så är det en fördel att känna till den kemiska bakgrunden.

Jag hatar kemi, värsta ämnet i skolan!

Helt säkert är det onödigt många som tycker så eller åtminstone något liknande. Då är det definitivt dags att tänka om, särskilt om du vill göra något åt en övervikt. Kroppen ”vet” definitivt allt om sin fettkemi, den tillverkar och lagrar ur det du äter. Kan du tillåta att kroppen är så överlägsen din hjärna?

Om du tar till dig eller själv använder påståenden som ”undvik mättade fetter, de är farliga” och ”ät mer fleromättade fetter, de är jättenyttiga” så är jag övertygad om att du kan vidga dina perspektiv avsevärt. Det sker inte i en handvändning, därför blir det flera inlägg.

Grundläggande kemi om vårt garanterat största energilager

Endast tre grundämnen bygger samtliga fettsyror, nämligen väte, syre och kol. De kan binda till många andra ämnen, men i detta sammanhang fokuserar jag enbart på deras inbördes umgänge.

Kemister talar om bindningar mellan atomer, de kan ha flera betydelser som jag inte går närmare in på. Betrakta dem för enkelhets skull som utsträckta händer, beredda att ta andra i hand. Snart nog slutar jag att referera till ”händer” och ”greppa” och övergår till det mer traditionell ”binda” och ”bindningar”.

  • Väteatomen (H) kan ”hålla sin enda hand” med andra väteatomer (blir vätgas, H2) men även med kol och syre (t.ex. en syre + två väte, H2O = vatten).
  • Syreatomen (O) har två ”händer”. När syre ”håller varandra med båda händer” bildas syrgas (molekylen O2).  När syre reagerar med kol i metabolismen (ämnesomsättningen) ger det koldioxid (CO2). Det krävs två syreatomer med vardera två ”händer” för att ”greppa” de fyra som en ensam kolatom har.
  • Kolatomer (C) är unika då de kan bilda kedjor. En kolatom är ”fyrhänt” och kan ”hålla hand” med upp till 4 atomer samtidigt. Inte så sällan greppar två kolatomer varandra med dubbelfattning, en dubbelbindning. Självklart blir det då färre händer/bindningar över till annat. En dubbelbindning är dessutom ”stelare” än en enkel bindning, testa gärna skillnaden genom att hålla en annan person med två händer istället för en.
Kolkedjan

Den enklaste varianten är en rad kolatomer med enkelbindningar emellan och varje kol dessutom binder till två väteatomer. Här är alla atomer angivna med bokstäver och de linjer som slutar i tomma intet antyder att kedjan ansluter till något annat.

 

Det finns andra sätt att illustrera kolkedjor, till vänster finns kolen där linjerna korsar varandra och där linjerna slutar finns alltid en väteatom. Denna är C3H8, propangas.

 

Ytterligare ett sätt med annorlunda regler. Här finns det en kolatom vid varje ände av strecken, dessutom en i varje knick, sammanlagt 6 st. En tilläggsregel är att kolatomerna binder till 4 andra atomer om inget annat anges. Kolen i de 4 knickarna har underförstått 2 väteatomer vardera och i ändarna finns det 3 väte, alltså  C6H14, hexan, en komponent i bensin.

Metyländen

En kolatom har 4 möjliga ”händer” och om vardera greppar var sin väte bildas gasen metan (CH4).

 

 

När en kolatom binder tre väte kallas det en metylgrupp (CH3) Minustecknet betyder att gruppen som helhet har ett elektronöverskott, men kan även betraktas som att den har ”en hand över” som kan binda till något annat. Den finns inte som en fristående molekyl utan alltid som en del i ett annat ämne. En metylgrupp kan kemiskt betraktas som ett ordnat avslut på en kolkedja. Metyländen avslutar den feta delen av en fettsyra och kallas även omega-änden, mer om detta senare.

Karboxyländen

Detta är den andra änden av en fettsyra, det flertalet kemister betraktar som början, alfaänden. Alfa är den första bokstaven i det grekiska alfabetet, de följande kolatomerna kan numreras men vid namngivning används gärna det grekiska alfabetet. Skrivet på ett mycket kompakt men oöverskådligt sätt: COOH– Det är heller inte en fullständig molekyl, den har ett elektronöverskott och därmed en ”ledig hand” där den binder till resten av kolkedjan i en fettsyra. Mycket generellt kan det skrivas R-COOH där R** kan tolkas som ”Resten av molekylen”

Karboxyländen kan koppla vidare till andra molekyler, dess OH-grupp (hydroxylgrupp) har den förmågan.

  • OH-grupper i molekyler ”umgås” gärna  med vatten och är de tillräckligt många i förhållande till molekylen i övrigt så kan molekylen som helhet transporteras i blodet utan hjälp.
  • Finns rätt enzymer tillgängliga när två lämpliga molekyler med OH-grupper på rätt ställen träffs så drar enzymet de två molekylerna intill varandra, i skarven plockar det bort två väte och ett syre (som bildar vatten), kvar återstår en syreatom som fungerar som ”koppel”. Processen kallas förestring.
  • Om det går åt andra hållet, ett annat enzym försedd med en vattenmolekyl kommer till samma bindning så kan den ”peta in” den i bindningen så den faller isär, hydrolyseras***

Fettsyra

När man kopplar samman en metylände med en kolkedja och en karboxylände blir slutresultatet en fettsyra som får sitt grundläggande namn av antal kol i hela molekylen. Den till vänster heter butansyra, även känd som smörsyra. Väteatomen, H i karboxylgruppens OH sitter lite ”halvlöst” och under vissa omständigheter lossnar den och bildar en H+-jon (egentligen en hydroniumjon, H3O+), just det som kännetecknar en syra, se där skälet till att det heter fettsyra. Alla organiska syror räknas som svaga även om det finns några med få kolatomer som överraskar.

Grattis, redan nu vet du långt mer om fettsyror än de flesta, men vi stannar inte där, fortsättning följer.


*) Du kanske har hört talas om metylering, ” kemiska” för att ”sätta punkt” i t.ex. en kolkedja eller DNA.

**) En del molekylgrupper kan koppla upp sig åt mer än ett håll och därför ser man förutom R även R’

***) Hydrolysera: Hydro står för vatten och lysera för att upplösa, sära på.

I Västerbottens-Kuriren och Dagens Nyheter från 2013 fanns rubriker på temat att alkohol är rena bränslet för stordrickares hjärnor (DN). Följer man spåren bakåt mot källorna dyker en artikel i ScienceNews upp. Den är något mer utförlig, citaten nedan kommer därifrån.

Alcohol may give heavy drinkers more than just a buzz. It can also fuel their brains, a new study suggests.

Min tolkning: Alkohol kan försörja hjärnan med bränsle.

Long-term booze use boosts brain levels of acetate, an energy-rich by-product of alcohol metabolism… In the study, people who downed at least eight drinks per week also sucked more energy from acetate than their light-drinking counterparts.

Min tolkning: Lång tids användning av alkohol ökar hjärnans innehåll av acetat, en energirik molekyl från alkoholmetabolismen. I studien fann man att de som drack minst 8 drinkar per vecka fick mer energi från acetat än de som drack mindre

Både här, delvis även i studien, får man intrycket att alkohol/etanol är en unik källa till det acetat* man studerar. Dessutom underhåller man noggrannt den sedan länge (i fysiologi- och biokemikretsar) passerade åsikten att hjärnan uteslutande kräver glukos för att fungera.

Syntolkning av bild: En negativt laddad acetatjon. Med ytterligare en väteatom på rätt ställe vore det en ättiksmolekyl.

The extra energy may give heavy drinkers more incentive to imbibe, says study coauthor Graeme Mason of Yale University. And the caloric perk might help explain why alcohol withdrawal is so hard.

Min tolkning:  Graeme Mason vid Yale menar att den extra energin från alkohol kan ge stordrickare skäl att fortsätta och energitillskottet gör det svårt att sluta

Ska vi tro på det, att den extra energin från alkohol gör det svårt att avstå? Ibland är “forskare” så förundransvärt …, tja, vadå?

Acetate is best known as a chemical in vinegar. But when people drink a glass of wine or drain a can of beer, their liver breaks down the alcohol and pumps out acetate as leftovers. The bloodstream then delivers acetate throughout the body, including to the brain.

Min tolkning: Acetat är bättre känt som en del av vinäger. När man dricker alkohol metaboliseras den av levern som avger acetat till blodet som en restprodukt. Blodet levererar acetatet i hela kroppen, inklusive hjärnan.

Såhär fortsätter det artikeln ut, som att acetat har unika egenskaper och uteslutande beror av alkoholkonsumtion. Men låt oss ta en närsyntare titt in i kroppens metabolism.

Acetat i biokemiska sammanhang kopplas gärna till den jättestora bärarmolekylen** CoA (coenzym A), en central molekyl i ämnesomsättningen. Dess huvudsakliga uppgift är att överföra kolatomer till citronsyracykeln (Krebs cykel) inne i mitokondrierna (cellens “kraftverk”). Detta sker oavsett om energiråvaran är glukos, fettsyror*** eller ketoner. Acetat är alltså ingen unik kemikalie i kroppen.

Men varför blir den betydelsefull för alkoholkonsumenters hjärnor, mer för den som dricker mycket? För det är sant.

Alkohol har visserligen en del positiva effekter på kropp och psyke, men man når snabbt den gräns där den får påtaglig giftverkan och levern sätter därför in alla resurser på att metabolisera alkoholen så snart den dyker upp. Eftersom levern annars är en betydande leverantör av glukos från leverglykogenet så kan blodsockerhalten sjunka såpass att hjärnan får för lite. Hjärnans upptag av glukos ur blodet sker via passiva glukostransportörer vars sammanlagda kapacitet är beroende av hur många som finns på cellytorna. Regleringen av antalet som är i tjänst sker rätt långsamt och vid lågt blodsocker blir glukosinströmningen momentant lägre än behovet och det är här magin sker.

Hjärnan är inte alls unikt glukosberoende utan drivs med fördel av ketonen acetoacetat samt beta-hydroxybutyrat. Dessa produceras ur de tidigare nämnda acetyl-CoA i leverns mitokondrier, är vattenlösliga och transporteras med blodet till alla delar av kroppen inklusive hjärnan.

Ur studiens text:

Chronic heavy drinkers spend a large fraction of time with elevated blood acetate, and the greater brain acetate metabolism can potentially be induced by the habitual generation of acetic acid in the blood from alcohol, as observed previously in humans and other animals. Furthermore, chronic heavy drinking without eating can induce episodes of hypoglycemia , which have been shown to increase blood-brain monocarboxylic acid transport and therefore increase brain availability of acetate.

Min tolkning: Kroniska alkoholkonsumenter har ofta förhöjda acetatnivåer i blodet och hjärnans användning den som energikälla kan ökas genom de förhöjda ättiksyramängderna i blodet (med ursprung i leverns alkoholmetabolism). Intensiv alkoholkonsumtion utan att äta kan ge hypoglykemi (uttalat lågt blodsocker) vilket visats öka inströmningen av acetat genom blod-hjärnbarriären.

Denna studie visar att hjärnan, trots alkoholens i övrigt dominerande negativa verkningar, förser sig med energi från alternativa källor, i detta fall alkohol, efter samma mönster som LCHF-are utnyttjar redan i nyktert tillstånd, nämligen ketoner.

Kompletterande om ättiksyra: Cancerns energiförsörjning är dess svaghet


*) Acetat är inte en molekyl man kan framställa fristående, det t.ex. kan vara en lösning av etansyra i vatten där den till en del protolyseras (delas upp) till den sura hydroxyljonen H3O+ och acetatjonen CH3COO. Du har alldeles säkert etansyra hemma, antingen i form av ättika, vinäger, kanske en slatt vin som oxiderat och blivit surt.

**) I jämförelse med acetatet är bärarmolekylen CoA verkligen jättelik och komplicerad, men se den som en industrirobot som flyttar en pyttegrej.

***) Du vet att fett är en av kroppens energiråvaror, kanske även att fett byggs av fettsyror. Men vet du att ättika är den kortaste (minst antal kolatomer = 2) av alla mättade fettsyror?

Källa:  Increased brain uptake and oxidation of acetate in heavy drinkers Fulltext och gratis

Detta inlägg är långt, detaljrikt och mest riktat till nördar som vill se andra perspektiv. För den som väljer att ägna sin tid till annat så vill jag sammanfatta min (och många andras) åsikt:

Den Finska mentalsjukhusstudien är ett kvalificerat lågvattenmärke.

Det är en ofta citerad studie där man avser att kritisera fett, särskilt mättade fetter*, i maten.

Studier kan ha mycket varierade egenskaper, här några få exempel.

  1. Den kan vara av hög kvalité med tydliga, icke falsifierbara resultat. Självklart är det vad vi lekmän tänker oss är sinnebilden av “vetenskap”. Tyvärr tillhör de undantagen, åtminstone i den komplicerade miljö som kroppen utgör.
  2. Den kan ge tydliga utfall som tilltalar de som citerar, även om kvalitén är diskutabel.
  3. Den kan bygga på experimentella förutsättningar som numera av olika skäl inte längre används eller är otillåtna.
  4. Den kan vara den enda eller en av få som ger utfall som tilltalar de som citerar även om kvalitén är usel.

Riktigt illa är det när en studie som uppfyller punkt 3 och 4 kommer att utgöra närmast avgörande referenser till ett skakigt och förmodligen felaktigt teoribygge.

Författarna till ovanstående artiklar i British Medical Journal har studerat bakgrundsmaterial och funnit att studien nedan uppfyller kraven 2, 3 och 4 ovan.

Dietary prevention of coronary heart disease: the Finnish Mental Hospital Study.
Turpeinen O, Karvonen MJ, Pekkarinen M, Miettinen M, Elosuo R, Paavilainen E.

A controlled intervention trial, with the purpose of testing the hypothesis that the incidence of coronary heart disease (CHD) could be decreased by the use of serum-cholesterol-lowering (SCL) diet, was carried out in 2 mental hospitals near Helsinki in 1959 – 1971. The subjects were hospitalized middle-aged men. One of the hospitals received the SCL diet, i.e. a diet low in saturated fats and cholesterol and relatively high in polyunsaturated fats, while the other served as the control with a normal hospital diet. Six years later the diets were reversed, and the trial was continued another 6 years. The use of the SCL diet was associated with markedly lowered serum-cholesterol values. The incidence of CHD, as measured by the appearance of certain electrocardiographic patterns and by the occurrence of coronary deaths, was in both hospitals during the SCL-diet periods about half that during the normal-diet periods. An examination of a number of potential confounding variables indicated that the changes in them were small and failed to account for the considerable reduction in the incidence of CHD. It is concluded that the use of the serum-cholesterol-lowering diet exerted a substantial preventive effect on CHD.

Källa: http://www.ncbi.nlm.nih.gov/pubmed/393644

Låt oss bena lite i denna text.

  • Den anges vara en kontrollerad studie med avsikt att testa hypotesen att en “kolesterolsänkande” (SCL) kost sänker hjärtsjukdom.
  • Den genomfördes på två mentalsjukhus nära Helsingfors under åren 1959 – 1971
  • Resultaten var statistiskt (om än inte vetenskapligt) säkerställda på män, inte kvinnor.
  • Vid det ena sjukhuset serverades SCL-kost vilket innebar begränsade mängder mättade fetter och kolesterol och relativt mycket fleromättade fetter.
  • Det andra sjukhuset fungerade som kontroll med normal sjukhuskost.
  • Efter 6 år bytte grupperna mathållning och försöket fortsatte ytterligare 6 år.
  • Användningen av SCL-kost associerades med tydligt sänkta kolesterolnivåer.
  • Förekomsten av CHD (hjärtsjukdom), mätt via EKG och död, var under SCL-perioderna ungefär halverad.
  • Slutsatsen är att den kolesterolsänkande kosten utövade en påtaglig effekt att motverka hjärtsjukdom.

Vid en första anblick verkar detta övertygande, en kontrollerad studie, crossover, lång tid, objektivt mätbara utfall och statistiskt säkerställd hypotes. Vad kan då gå fel, är det inte bara att köra och tuta?

Nej, långt ifrån om man får tro Chris Ramsden och medarbetare som anger följande skäl:

The Finnish Mental Hospital Study was excluded because patients were assigned by hospital and not randomised as individual patients.

Min tolkning: Den Finska mentalsjukhusstudien var ej randomiserad (slumpad) då deltagarna fördelades till behandlingsgrupp respektive kontrollgrupp beroende på vilket sjukhus de var inskrivna på vid inledningen.

TFA consumption differed markedly in the two control groups.

Min tolkning: Användningen av transfetter (TFA) skilde påtagligt mellan de två kontrollgrupperna.

The Finnish Mental Hospital Study was a 12-year crossover study that randomised two hospitals (Hosp N and Hosp K) of mostly schizophrenic patients (77% in Hosp K and 69 % in Hosp N) to either a high-PUFA, ‘serum cholesterol-lowering’ diet (Hosp N) or their hospital’s typical control diet (Hosp K) for 6 years. After this initial 6-year phase, the diets were switched so that Hosp N patients received the Hosp N control diet and Hosp K patients received the high-PUFA diet. This unusual design was also confounded because patient populations were ‘rejuvenated by discarding the six oldest annual cohorts and admitting six new annual cohorts on the younger end of the age range’ at this reversal of diets in 1965.

Min tolkning: Studien var 12-årig crossoverdesign (behandlings- och kontrollgrupper bytte efter halva tiden) som innefattade två mentalsjukhus (i fortsättningen kallade N och K) med huvudsakligen schizofrena (77% i K och 69% i N). Till en början serverades en “kolesterolsänkande” kost med hög andel fleromättade fetter vid N medan K serverade “normalkost”. Efter 6 år bytte man kost och fortsatte till försökets slut efter 12 år enligt mönstret för en crossoverstudie. Utformningen kom att innebära att 6 årsgrupper av deltagare ersattes med 6 nya, yngre, vid kostbytet.

This combination of inappropriate randomisation and the crossover design allowed dominant confounders to enter into the study.

Min tolkning: Utebliven randomisering och bristfällig crossovermetodik tillät störande faktorer att påverka utfallet.

Critically the cardiotoxic antipsychotic medication thioridazine was used disproportionately in one study arm. Hosp N control patients received an average of 1·79 (100mg) doses of thioridazine per d, more than twice as much as patients in the other three study arms. Thioridazine is significantly associated with risk of sudden death (adjusted OR 1⁄4 5·3; 95 % CI 1·7, 16·2; P1⁄4 0·004), ‘the likely mechanism being drug-induced arrythmia’ Thioridazine also causes T-wave distortions, QRS changes, ST elevations and other electrocardiogram changes both with therapeutic administration and overdoses.

Min tolkning: Thioridazine användes oproportionerligt mycket i en av studiens armar. När N utgjorde kontrollgrupp fick de i genomsnitt mer än dubbla dosen (1.79 dagsdoser) av de övriga grupperna. Thioridazine är statistiskt säkerställt associerat med plötslig död och annan hjärtpåverkan samt påverkar EKG både vid normal- och överdos.

These electrocardiogram changes and clinical presentations overlap with those seen in MI and sudden cardiac death and may have been counted as CHD events.

Min tolkning: EKG-n i denna grupp kan ha misstolkats och räknats som hjärt-händelser (CHD)

Furthermore, patients in all four study arms were taking tricyclic antidepressants (0·42 doses per d in Hosp N controls). Concurrent use of phenothiazines (especially thioridazine) and tricyclic antidepressants can lead to cardiac arrythmias, electrocardiogram changes and sudden death, even in young adults without heart disease on therapeutic doses.

Min tolkning: Patienter i alla grupper fick antidepressiva preparat (TCA) som i samverkan med Thioridazine kan följas av hjärtarytmi, EKG-förändringar och plötslig död även med normala doseringar hos yngre utan känd hjärtsjukdom.

Thioridazine also has the most severe metabolic effects among typical antipsychotics, inducing an average weight gain of 7 lbs (3·2 kg) in a 10-week study. Therefore, over the 6-year phase, the control subjects were at substantially greater risk of thioridazine-induced weight gain, insulin resistance, electrocardiogram changes and sudden cardiac death.

Min tolkning: Thioridazine har den allvarligaste metabola påverkan av jämförbara preparat då den inducerar viktuppgång (3.2 kg i en 10 veckors studie). Kontrollgruppen vid N-sjukhuset utsattes följaktligen för påtagligt större risker av Thioridazine-påverkan via viktuppgång, försämrat insulinsvar, EKG-förändringar och plötslig hjärtdöd.

Marked differences in TFA consumption between the two control groups, and between the control and experimental groups, were also identified as a significant confounding factor. Hospital K controls consumed more than three times as much TFA as Hosp N controls, and about nine times as much as either experimental group.

Min tolkning: Påtagliga skillnader mellan användningen av transfetter (TFA) mellan de två kontrollgrupperna och mellan kontroll- och experimentgrupper är en störande faktor. När K utgjorde kontrollgrupp användes mer än 3 gånger så mycket TFA som när N var kontroll, dessutom ungefär 9 gånger den vid någon experimentgrupp.

Jag har tolkat texten snarare än översatt, förhoppningsvis utan att ha förryckt dess mening.

Utan att det framgår av ovanstående fanns inga statistiskt säkerställda skillnader i total mortalitet (risk för död oavsett orsak) mellan kontroll- respektive experimentgrupper.

Studien citeras ofta där man vill stödja hypotesen att konsumtion av mättat fett ökar risken för hjärtattack bland annat för att det är en av få som alls gör det. (Se punkt 2 och 4 i ingressen)

Vitsen med en crossoverstudie är att deltagare skall tillhöra både försöks- och kontrollgrupp. Denna metodik är väl lämpad när studietiden är någorlunda kort och utfallen så milda att man kan förvänta sig att försökspersonerna hinner delta i såväl kontroll- som experimentgrupp. När den, som i detta fall, dels är mycket lång och där en av de förutsedda ändpunkterna var död så är crossovermetoden helt sanslös. Den finska mentalsjukhusstudien är en av få om inte den enda av sin typ som använt denna design. (Se punkt 3 i ingressen)

Den Finska mentalsjukhusstudien var i praktiken ingen kontrollerad studie då flera faktorer varierade mellan vårdinrättningarna N och K samt mellan försöks- och kontrollperioder. Redan i november 1972 av Lancet pekade John Yudkin med kollega att mängden socker i kosten varierade med nästan 50%!

Huvudförfattaren av studien svarade i Lancet den 30 december:

“In view of the design of the experiment the variations in sugar intake were, of course, regrettable. They were due to the fact that, aside from the fatty-acid composition and the cholesterol content of the diets, the hospitals, for practical reasons, had to be granted certain freedom in dietary matters.”

Min tolkning: “Variationen i sockeranvändning var beklaglig. Det berodde, förutom skillnader i fettsyrasammansättningen (variationer i fettkällor) samt kolesterolinnehåll, att sjukhusen av praktiska skäl måste tillåtas viss frihet i kostsammansättningen.” (!)

Redan här försvinner förutsättningarna för en kontrollerad studie som innebär att, såvitt möjligt, alla faktorer utom den eller de studerade skall hållas konstanta.

Deltagarna i de olika grupperna varierade kraftigt då patientomsättningen var hög, upp till 40%. Alla patienter inkluderades även om de bara deltog så lite som halva tiden.

Den finska mentalsjukhusstudien är av ovanstående och andra skäl inte kvalificerad att utgöra referensmaterial som stöd för egentligen någonting, allraminst för att påvisa att mättade fetter är associerade till hjärtsjukdom. Påståenden där denna studie ingår som referens skall omvärderas i ljuset av detta.

Den finska mentalsjukhusstudien fyller dock en funktion, den kan fungera som en indikation på hur låg vetenskaplig nivå de som refererar till den accepterar. Alternativt kan det peka ut vilka som antingen inte läst eller reflekterat över vad den betyder.

Referenslistor som innehåller den finska mentalsjukhusstudien med avsikt att argumentera mot mättat fett i kosten är ett tecken på att grundvalarna kan vara riktigt ruttna.


*) Den här gången länkar jag inte till någon förklaring av vad mättade fetter/fettsyror i grunden innebär. Ta chansen att reda ut vad mättad/saturated innebär i kolkemins underbara värld, det är inte svårt och kan innebära att du har långt mer kunskap än flertalet som använder ordet. Alternativt kan du titta på en gullig kattvideo på YouTube.

Pronutritionist / Reijo Laatikainen: Kritik av den Finska Mentalsjukhusstudien

Stephan Guyenet: Whole Health Source

Steven Hamley

Ulcerös colit är en inflammatorisk sjukdom i tjocktarmen. Som namnet anger förorsakar den (blödande) sår som dels hindrar tjocktarmens funktion, dels ger blodförluster som kan vara mycket allvarliga. UC uppträder i skov med varierande frekvens och varaktighet och med rätt skötsel kan man leva med den under lång tid utan att den blir livshotande.

ulcero%cc%88s-colit

För egen del drabbades jag av ett enda skov våren 1970, hamnade på sjukhus nästan omgående. Gick ner i vikt till 49 kg och klarade inte ens att stå upp på en vanlig personvåg tillräckligt länge för att få en tillförlitlig avläsning. För att göra en lång historia kort opererades jag i november, hela colon togs bort och jag fick ”påse på magen”. Efter knappa två veckors konvalescens promenerade jag hem, 6 kilometer.

Få med UC upplever ett så dramatiskt förlopp, livet under skoven är inget avundsvärt. Ständig oro för var toaletter finns är bara ett problem. Allt som kan underlätta är önskvärt och i den studie jag nu intresserar mig för finns hopp.

Most clinical studies analyzing the effects of butyrate on inflammatory status focused on UC patients. Hallert et al[1] instructed 22 patients with quiescent UC to add 60 g oat bran (corresponding to 20 g dietary fiber) to their daily diet. Four weeks of this treatment resulted in a significant increase of fecal butyrate concentration and in a significant improvement of abdominal symptoms.

Min tolkning: De flesta studier som analyserar effekten av butyrat (smörsyra) fokuserar på patienter med UC. 22 patienter med vilande UC uppmanades att dagligen äta äta 60 gram havreflingor (motsvarande 20 gram fibrer). Fyra veckor med denna behandling gav statistiskt säkerställda ökningar av butyratkoncentrationen och minskningar av magproblem.

För den som ännu inte läst de föregående inläggen: Tjocktarmens bakterieflora kan bearbeta fibrernas glukos och ur den bygga kortkedjiga mättade fettsyror, (SCFA) varav cirka 15% är just butyrat. En annan råvara för dessa bakterier är resistent stärkelse vilka dessutom har fördelen att inte irritera den angripna tarmen med överflödigt fiberinnehåll.

These and other intervention studies[62-64] suggested that the luminal administration of butyrate or stimulation of luminal butyrate production by the ingestion of dietary fiber results in an amelioration of the inflammation and symptoms in UC patients.

Min tolkning: Denna och andra studier [2-4] visar att tillförsel av butyrat eller stimulering av egen butyratproduktion kan dämpa inflammation och symtom hos personer med UC.

Så en komplicerad passage som, så vitt jag uppfattar den, antyder att den inflammatoriska processen påverkas av inverkan från transportproteinet GLUT1, en icke insulinberoende glukostransportör. Möjligen kan det tolkas som att inflammationen ökar då tarmväggen och/eller dess slemskikt tar energi från glukos snarare än den mättade fettsyran butyrat.

Numerous studies have reported that butyrate metabolism is impaired in intestinal inflamed mucosa of patients with IBD. Recent data show that butyrate deficiency results from the reduction of butyrate uptake by the inflamed mucosa through downregulation of MCT1. The concomitant induction of the glucose transporter GLUT1 suggests that inflammation could induce a metabolic switch from butyrate to glucose oxidation. Butyrate transport deficiency is expected to have clinical consequences. Particularly, the reduction of the intracellular availability of butyrate in colonocytes may decrease its protective effects toward cancer in IBD patients[5]

Här avstår jag från att skriva en tolkning.

Det går alldeles utmärkt att leva med ”påse på magen”, särskilt om alternativet är att ha magsmärtor, fundera över var närmaste toalett finns samt oro över tjocktarmscancer. Med nuvarande kunskaper skulle jag testa strikt LCHF i kombination med resistent stärkelse. Hade jag börjat i tid skulle kanske min UC aldrig ens debuterat.

Tidigare i ämnet: Nytta av korta fettsyror i tjocktarmen, del 1,   Korta fettsyror i tjocktarmen, del 2,  Upptag av korta fettsyror, del 3


[1] Hallert C, Björck I, Nyman M, Pousette A, Grännö C, Svensson H. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 2003; 9: 116-121 (Abstract)

[2] Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, Richter F, Dusel G, Kasper H. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103: 51-56

[3] Lührs H, Gerke T, Müller JG, Melcher R, Schauber J, Boxberge F, Scheppach W, Menzel T. Butyrate inhibits NF-kap- paB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 2002; 37: 458-466

[4] Vernia P, Marcheggiano A, Caprilli R, Frieri G, Corrao G, Valpiani D, Di Paolo MC, Paoluzi P, Torsoli A. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther 1995; 9: 309-313

[5] Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 2010; 16: 684-695