Arkiv för kategori ‘SBU’

silver_symbol_moon_crescent

Umgänget grundämnen emellan i kemins atom- och molekylskala är rätt ”ytligt”. Grundämnens ”ID-kort” är i första hand det yttersta elektronskalet, valensskalet. De allra stabilaste, ädelgaserna, har alla exakt de 8 elektroner som krävs för att skalet (och dess orbitaler) skall vara fullbesatt och stabilt. Alla övriga grundämnen har från 1 till 7 elektroner i valensskalet. Ädelgaserna är de högdragna atomerna, tar inte kontakt med och avvisar oftast andras inviter, även från likar.

Bilden visar nymånen, en symbol som alkemister använde för att beteckna silver.

Det finns alltså många ämnen med precis samma antal yttersta elektroner och för att skilja dem åt är nästa fråga ungefär ”hur stor är du”. I lite mer inlindade termer gäller det atomnumret och atommassan, antalet positiva laddningar i atomkärnan (protoner), antalet kärnpartiklar (inklusive neutroner) och hur ”tajt” den håller i sina elektroner.

Tips inför fortsättningen: repetera om fria radikaler här.

En kort sammanfattning:

En fri radikal är en atom eller molekyl med laddning!

En fri radikal är ständigt beredd att ersätta en förlorad elektron. Om den kommer i kontakt med en annan molekyl som inte ”håller i” sina elektroner tillräckligt hårt så stjäl den helt enkelt det den kan få tag i. Och nu är det ombytta roller, molekylen som nyss slarvade med sina tillgångar blir hux flux en fri radikal och börjar i sin tur gå på rövarstråt.

På det sättet kan elektronbristen vandra vidare tusentals steg till dess den inte hittar något vidare ”offer” eller stöter på en antioxidant som permanent sätter stopp för det kemiska elektronröveriet. Till dessa hör C– och E-vitamin.

En fri radikal är en simpel elektrontjuv.

En silverjon (Ag+) är positivt laddad på grund av sitt elektronunderskott, en elektrontjuv i vardande och fungerar därför på samma sätt som andra fria radikaler*!

  • Vårt immunförsvar använder faktiskt fria radikaler (ämnen med elektronunderskott) som vapen för att bekämpa inkräktare. I urinblåsan råder en ytterst näringsrik miljö för bakterier. Till all lycka är urinen ovanligt rik på fria radikaler vilka framgångsrikt bekämpar skadliga bakterier och gör urinen närmast steril.

Inom sjukvården används silverbehandlade instrument där risken för bakterier är förhöjd och försök med silverbehandlade förband görs. Detta är exempel på behandling där man, åtminstone i teorin, lätt når tillräckligt höga silverkoncentrationer under lång tid utan att behöva förlita sig på kroppens egna upptags- och transportmekanismer.

  • En sökning hos SBU, Statens beredning för medicinsk och social utvärdering, ger 9 träffar på ordet silverförband: ”Det vetenskapliga underlaget är otillräckligt för slutsatser om silverförbands effekt på andel läkta sår, sårstorlek, smärta, livskvalitet, antal infektioner och antibiotikaförbrukning vid behandling av kroniska sår.”
  • SBU: Silverförband vid behandling av kroniska sår, Sammanfattning och slutsatser. Ex: ”Syftet med silverförband är att minska mängden bakterier i såret och därmed påskynda läkningen. Men den samlade forskningen räcker inte för att avgöra om såren läker bättre med sådana förband, eller om de har effekt på bakterier i kroniska sår, konstaterar SBU.”

Hos entusiastiska silverförespråkare finns vanligen gott om hänvisningar till studier som menar att s.k. kollodialt silver/nanosilver är ofarligt, bland annat beroende på att 90 – 99% på kort tid passerar ur kroppen.

Hos samma entusiastiska silverförespråkare finns även gott om hänvisningar till studier som finner att kolloidalt silver/nanosilver visat sig begränsa och döda sjukdomsframkallande bakterier, till och med cancerceller. Den blotta mängden hänvisningar gör arbetet att läsa och bedöma alla avskräckande stort. För egen del har jag gjort några nedslag och funnit att försöken, vad gäller förment positiva effekter, utförts ”in vitro”, alltså i laboratoriemiljö och på objektglas eller liknande. Där är det oerhört enkelt att nå tillräcklig silverkoncentration (även som starkt reaktiva silverjoner) under tillräckligt lång tid och i direkt anslutning till celler man vill påverka. Den som finner publicerade ”vetenskapliga” försök som gjorts in vivo och i/på vävnader som inte är i anslutning till kroppens ”ytor” är välkommen att kommentera eller maila mig, adressen finns nedan.

Hur behandlar man bakterier/celler i kroppen (in vivo) som inte kan nås direkt via sår eller slemhinnor? Först några antaganden som känns rimliga men kan kompletteras och korrigeras om de visar sig vara ofullständiga eller felaktiga.

  1. För att vara kemiskt aktiv (jonen Ag+) måste den finnas i en vattenrik miljö (ex. blod/lymfa).
  2. För att vara verksamt måste (den fria radikalen) Ag+ nå minst samma koncentrationer vid målområdet in vivo (i levande vävnad) som krävs in vitro (i provrör/på objektglas) och under minst samma tid.
  3. För att vara ofarligt (få eller inga biverkningar) får behandlingen inte skada andra än målvävnaderna annat än i rimlig omfattning.

I ett försök med cancer i mänsklig vävnad** fann man att hälften av cancercellerna dödades inom 5 timmar av 3,5 ng/ml ”silver”. Koncentrationen är 0,0000000035 gram fördelat på 1 gram vätska, annorlunda uttryckt 3,5 ppm. Vi talar alltså om en oerhört potent gifteffekt av ett förment helt ofarligt ämne.

För att vara rimligt ofarligt under transporten till målvävnaden måste tillräckligt mycket av silvret i huvudsak vara inaktivt (oladdat silver/metalliskt nanosilver). Hur kan metalliskt, kemiskt näst intill inaktivt och därmed ofarligt silver, aktiveras till verksamt Ag+ på just på rätt ställe? Det kostar energi att avlägsna en elektron, varifrån kommer den?

En entusiastisk silverförespråkare hävdar att hans kollodiala silverprodukt till 90% utgörs av jonformen Ag+. Källa: http://www.ion-silver.com/allt.om.silver.html

Ionosil uppges ha koncentrationen 10 ppm (parts per million) vilket innebär 0,00001 gram silver per ml, med rådet att blanda två teskedar per liter dricksvatten för att döda bakterier i dricksvatten.

Från samma sida:

Gör vi ett snabbt räkneexempel på hur 10 ml 10 ppm starkt kolloidalt silver späs med blod (ca 5 liter hos en vuxen) enbart så får vi:

5 liter = 5000 ml = 500 gånger mer än 10 ml. Detta motsvarar 500 gångers utspädningseffekt enbart i blodet. Det gör att delar vi 10 ppm med 500 då får vi en blodkoncentration motsvarande 0.02 ppm. Hela kroppsvikten på säg 70 kilo motsvarar grovt räknat 70.000 ml. Slår vi ut utspädningseffekten på hela kroppen talar vi om koncentrationer om 0.001 ppm.

Dessutom:

90-99% är utrensat redan någon dag efter själva intaget.

Låt oss betrakta blodkoncentrationen 0.02 ppm = 20 ng/ml Ag. I studien om cancerceller fann man att 3,5 ng/ml efter 5 timmar dödat hälften av cancercellerna i studien. Vad hindrar att silver i jonform (beter sig som en fri radikal) från att ställa till skada under färden i blodet, alternativt neutraliseras av antioxidanter?

Då det (såvitt för närvarande känt) inte finns någon målinriktad transport av silver i kroppen kan det även vara intressant att citatet nämner att utspädningseffekten i hela kroppen ger 0.001 ppm (1 ng/ml), klart lägre än de 3,5 ng/ml som visats döda hälften av cancerceller i ”provrör”.***

Till det måste fogas att kroppen snabbt eliminerar 90 – 99% av tillfört kollodialt silver inom ett dygn. Det finns ingen större anledning att tro att detta silver varit ute i kroppen och gjort sin kur för att sedan rensas ut. Betydligt sannolikare är att silvret inte tas upp i nämnvärd omfattning under sin passage genom mag- och tarmkanalen utan hamnar i toaletten utan vidare spisning.

Om 90 – 99% rensas ut tämligen omgående krävs rimligen att doseringen är mycket högre än den silverentusiasten rekommenderar. Ta inte det som ett förslag att öka doseringen utan som ett skäl att kollodialt silver i doseringar som anses ofarliga också är meningslösa för att behandla kroppens inre!

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?,  Silver – del 3, utspädningseffekten,  Silver – del 4, Vad är en kolloid?,  Silver – del 5, Är det ”farligt”?,  Silver – del 6, passage genom hud,  Silver – del 7, metalloproteiner? Silver – del 8, vad är oligodynamisk effekt?

Fortsättning följer.


Info för nördar: Ett elektronpar är två elektroner som befinner sig i samma atomorbital i en atom. Eftersom de befinner sig i samma orbital måste de ha motsatt spinn. Elektronparsbegreppet är viktigt i diskussionen av kovalenta bindningar. Kovalent bindning kallas också elektronparbindning. Det är antalet fria elektronpar som avgör hur många andra atomer en atom kan binda med elektronparbindningar; till exempel kan kol binda fyra andra atomer, syre två andra och väte en annan atom.

En molekyl som har en eller flera oparade elektroner kallas radikal.

Källa: Wikipedia

Allmänt om ädelgaser: Andra gasatomer uppträder parvis (ex. H2, O2, N2). Ädelgaserna är ”singlar” och bara två, krypton och xenon, ingår alls i molekyler, vanligen där det ytterst reaktiva grundämnet fluor ingår, en slags ”medlare”.

*) Potenta producenter av fria radikaler är tobaksrök och överdrivet solande. I det senare fallet är det fotoner i UV-området som har tillräcklig energi för att permanent excitera elektroner så att de helt lämnar sin atom.

**) Jag planerar att återkomma till detta försök i ett senare inlägg. Den nyfikne kan redan nu söka på Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

***) Silver i den aktiva jonformen kan bara förekomma i vatten och då våra kroppar består av cirka 2/3 vatten så minskar den maximala utspädningseffekten något.

Annonser

Mätningar av blodglukos med hjälp av teststickor är diabetespatientens verktyg för att få insikt i glukosnivåerna i blodet. Systematiska egna mätningar av blodglukos är en förutsättning för framgångsrik insulinbehandling i syfte att nå god glukoskontroll. Däremot har nyttan av systematiska egna mätningar ifrågasatts för patienter med typ 2-diabetes, som inte behandlas med insulin. SBU:s rapport från 2009 kommer fram till att det saknas studier som undersöker detta över längre tid än ett år. Det saknas också studier av eventuella pedagogiska effekter av egenmätningar påverkar motion och kost.

Källa: SBU – Egna blodglukosmätningar vid typ 2-diabetes utan insulinbehandling

En stor skillnad mellan insulinbehandlade och icke insulinbehandlade diabetiker är att de förra kommer att uppleva rejäla skillnader av sin behandling. Konventionell kostbehandling av diabetes typ 2 ger vanligen väldigt små effekter och egenmätning av blodsocker blir mest bara frustrerande. En av slutsatserna är dock åt det positiva hållet.

Författarnas slutsatser är att egenmätningar av blodsocker (self monitoring of blood glucose, SMBG) är en effektiv metod för att minska HbA1c hos patienter med icke-insulinbehandlad diabetes, men enbart om det sker i kombination med någon typ av stöd eller utbildning från vårdpersonal.

Jag skulle vilja ändra lydelsen i slutet av detta till ”…enbart om det sker i kombination med stöd av vårdpersonal som utbildats i verksamma kostråd.”

Att förlita sig på kostråd av typen ”ät mindre vid tre tillfällen per dag + mellanmål och spring mer” är meningslöst.

Effekter som är enkla att mäta ger inte alltid besked om det som har verklig betydelse för patienter och brukare. Forskningsstudier som använder så kallade surrogatmått och kompositmått måste tolkas försiktigt, säger Sigurd Vitols på SBU.  

En av de grundläggande frågorna när insatser i vård och omsorg utvärderas är vilken effekt de har på människors liv och hälsa. När SBU sätter i gång ett utvärderingsprojekt är det därför en viktig fråga vilka effekter som åtgärderna ytterst syftar till. 

Studier som ska undersöka nyttan av en insats eller behandling ska helst inriktas på de slutmål som åtgärden syftar tillnågot som verkligen är viktigt för patienter och brukare.

Källa: SBU – Effektstudier inriktas inte alltid på det mest väsentliga

SBU handbok

Surrogatparametrar är vanligen lätta att mäta och antas ha en avgörande betydelse för t.ex. utveckling av hälsa eller sjukdom. För att ett sådant surrogatmått ska vara meningsfullt måste sambanden vara odiskutabla, något som ofta inte är fallet.

Skälet till att studierna bör inriktas på sluteffekter för personerna, och inte enbart på mellanled (surrogatmått) som tros vara involverade i en skadlig utveckling, är att kopplingen ofta är komplicerad och ofullständigt kartlagd mellan faktorer som betraktas som orsak och verkan. Det är till exempel inte givet att ett läkemedel som minskar skadligt kolesterol också skyddar mot hjärtinfarkt. Dessutom kan åtgärderna ha bieffekter som spelar roll för människors dagliga liv, hälsa och livskvalitet.

Ett mycket tydligt exempel är statiner, s.k. ”kolesterolsänkare”. Preparatindustrin har blomstrat grundat på tveksamma antaganden om ”ont kolesterol” och ”gott kolesterol”. Under de senaste åren har kritiska forskare gradvis punkterat de överdrivna löftena, den senaste är Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review där fyra svenskar tillhör författarna.

Exempelvis bör studier av ett kolesterolsänkande läkemedels förmåga att bromsa åderförkalkning inriktas på att undersöka effekten på människors överlevnad, hjärt-kärlhälsa och livskvalitet.

– Att enbart undersöka effekten på kolesterolnivåerna är alltså inte tillräckligt för att kunna bedöma nyttan med behandlingen, säger han. En kolesterolsänkning som sådan är ju egentligen ointressant för patienten om det inte samtidigt kan visas att patienten har någon nytta av den.

– För patienterna är det effekten på dödlighet, insjuknande i hjärtinfarkt och livskvalitet som är det riktigt intressanta.

Källa: SBU

Så finns kompositmått:

Ett annat problem vid effektmätning kan uppstå när man väljer sammansatta mått, så kallade kompositmått. Då väger forskarna samman flera olika utfall för att öka studiens statistiska styrka. Men om utfallen har väldigt olika dignitet är detta en tvivelaktig metod – till exempel att slå ihop dödlighet med behov av slutenvård.

Man kan, enligt SBU, helt förrycka sanningen genom att använda kompositmått:

– I värsta fall kan kompositmåttet maskera en negativ behandlingseffekt på verkligt viktiga utfall.

SBU utvärderar metoder framför allt inom hälso- och sjukvården genom att systematiskt och kritiskt granska den vetenskapliga litteraturen på olika områden.

Källa: Statens beredning för medicinsk och social utvärdering

SBU handbok

Som jag ser det är forskning inom kost och näraliggande områden oerhört banal och fokuserar på industrins intressen snarare än reella hälsoaspekter. Ur media väller påståenden om superfoods, fettförbrännare och förhoppningar om viktminskningsmediciner av diverse slag.

Riksmedia anlitar par préférence standardiserade böneutropare som t.ex. Mai-Lis Hellenius, Charlotte Erlanson-Albertson, Claude Marcus och andra som är djupt rotade i det hittillsvarande och vars status bland sina likar och finansiärer är hyfsat beroende av de åsikter man uttrycker. 

Lönsamhet inom matindustri bygger på samma grund som andra affärer, låga råvaru- och arbetskostnader samt återkommande kunder. Marknadsföringen sker gärna med ”vetenskap” som ofta(st) bekostas och utförs på industrins uppdrag och med förutsättning/förhoppning att förstärka konsumenternas tilltro till deras produkter.

När forskningsresultat blir missvisande beror det ofta på svagheter i studiernas upplägg och genomförande – det visar SBU:s systematiska översikter. Men det kan också handla om tankefel och bristande saklighet, både hos forskarna själva och hos andra som tolkar deras fynd.

Källa: SBU – Vinklad tolkning snedvrider fynden

Svagheter i studiernas upplägg och genomförande är ett ytterst vanligt systemfel, bristande precision i mätningar och skrämmande låga krav på det som kallas statistisk signifikans.* Observationsstudier av kostfaktorer kan omfatta tiotusentals deltagare och sträcka sig över tiotals år men data om vad deltagarna äter baseras ofta på enstaka eller ett fåtal ifyllda formulär under samma tid. Oprecision i ingångsdata kan aldrig uppvägas av vare sig antal deltagare eller tid, skit in ger skit ut, SISU.

Min åsikt är att det inte är de vassaste knivarna i lådan som driver koststudier. Beställarna vill dessutom ha hyfsat snabba resultat, båda omständigheterna har sänkt kraven på statistisk signifikans.

Lägg märke till ”…bristande saklighet…”! Det är en omskrivning för att ”forskarna” har ett bildningsunderskott, låter sig manipuleras alternativt inte vidareutbildar sig efter de senaste pålitliga rönen.

Långt ifrån all forskning är tillförlitlig. Direkt fusk och oredlighet kan få stor uppmärksamhet i medierna men är trots allt relativt ovanligt. Betydligt mer utbredda problem, som inte betraktas som fusk men som ändå förvränger resultaten, förbigås ofta med tystnad. Ändå kan de leda till fullständigt felaktiga slutsatser.

Paolo Macchiarini på Karolinska är ett exempel på en högprofilfuskare vars verksamhet med stor sannolikhet ledde till förtida död hos försökspersonerna.

I stället för att allsidigt undersöka ett ämne eller pröva en hypotes, kan det vara frestande för forskare att vinkla sina frågor och svar för att få stöd för den egna uppfattningen. Sakligheten kan hotas av politiska hänsynstaganden, personliga karriärintressen, professionella dispyter, avundsjuka, hybris** och ärelystnad.

”Personliga karriärintressen”! Det gäller att klättra på de stegpinnar som bjuds.

Vetenskapssamhället har fastlagt ett etiskt fundament som förväntas gälla. Här ingår bland annat att forskningsresultat inte får manipuleras för att gagna vinstintresse eller personlig övertygelse hos forskaren själv eller omgivningen. Vetenskapliga påståenden måste vara öppna för ifrågasättande och ska accepteras på grundval av observerade fakta – inte på grund av särintressen. Sakinnehållet i hypoteser, invändningar och kritik ska beaktas utan hänsyn till vem eller vilka som framför dem.

Till detta kommer ”nyttiga idioter” som lydigt förmedlar pressmeddelanden och annat material utan att kritiskt granska eller ställa följdfrågor.


*) Statistisk signifikans innebär, väldigt svepande uttryckt, hur stor risk det är att utfallet av en observation eller ett experiment beror på slumpen.

**) Hybris – ett uttryck för ett sinnestillstånd där en person har en starkt överdriven självuppfattning, se Storhetsvansinne