Arkiv för kategori ‘glukagon’

Ketoner är ämnen där en syreatom är dubbelbunden till en kolatom mellan två andra grupper, här R och R’imgresDen näringsmässigt mest betydelsefulla ketonen är beta-hydroxybutyrat, faktiskt inte en ”renlärig” keton. Namnet låter skrämmande men det är bara internationellt förståelig ”kemiska”.

  • Beta– berättar var det speciella hos ett ämne är beläget.
  • Hydroxy– beskriver en liten grupp atomer som består av en syre- och en väteatom, en OH-grupp.
  • Butyrat visar att det gäller en kolkedja med fyra kol.

Sätt nu samman denna information på samma sätt som vi bygger upp en ekvation ur dess delar. Vi får då en kort kolkedja som skiljer sig från fettsyran n-butansyra (4 kol, smörsyra, bilden nedan) genom att en väteatom invid den andra kolatomen i kedjan (räknat från metyländen, den ”feta” änden) ersätts med en OH-grupp.

N-butansyra

Detta resulterar i beta-hydroxybutyrat, märk den lilla skillnaden mot förra bilden.

Beta-hydroxybutyrat_2

Kort– och medellånga fettsyror har utomordentligt fördelaktiga hälsoegenskaper, de kan bland mycket annat minska eller eliminera epileptiska anfall och dramatiskt förbättra vissa typer av demens. Framförallt korta fettsyror är lösliga i blodet och kan transporteras dit där de behövs, med ett undantag, hjärnan. Där finns blod-hjärnbarriären för att skydda hjärnan och den sätter stopp för fettsyror.

Men den extra OH-gruppen hos beta-hydroxybutyrat förändrar allt. OH-grupper är speciella såtillvida att det endast saknas en väteatom för att bygga en vattenmolekyl, OH-grupper ”umgås” därför gärna med vatten, ju fler OH desto lättare. Beta-hydroxybutyrat har två sådana hydrofila (vattenälskande) grupper och den lilla förändringen gör att ketonen med största lätthet följer blodet vart som helst i kroppen, även genom blod-hjärnbarriären! En av fördelarna hos beta-hydroxybutyrat är att den är nästan lika energität som motsvarande fettsyra utan att, räknat per energi, dra med sig lika mycket syre som glukos.

Med tanke på dessa goda egenskaper finns ingen anledning att ifrågasätta ketoner/ketos? Med ett undantag!

Våra kroppar behöver energigivande råvaror där hormonerna insulin och glukagon i samarbete fungerar som ”trafikvakter” och förser blodet med energi från såväl mat som redan befintliga lager av energi i kroppens vävnader. Hos personer med kraftigt nedsatt eller obefintlig insulinproduktion fungerar inte denna styrning, glukagonet tar överhanden och aktiverar glukosfrisättning och fettmetabolism inklusive ketonproduktion.

Diabetes typ 1 (kraftigt nedsatt eller obefintlig insulinproduktion) är alltså i grunden en dysfunktion (bristande funktion) i fettmetabolismen till skillnad från diabetes typ 2 (”sockersjuka”, åldersdiabetes) där insulin inte får den önskade effekten på upptag av glukos, blodsocker.

Om och när diabetiker typ 1 tappar kontrollen över glukagonproduktionen ökar frisättning av glukos såväl som fria fettsyror och ketoner. Beta-hydroxybutyrat har en karboxylände (COOH) som ger ämnet svagt sura egenskaper vilket i alla ”normala” sammanhang (ketos) saknar betydelse men hos diabetiker typ 1 med nedsatt förmåga att reglera fördelningen av energiråvaror i blodet kan skapa problem i form av DKA, diabetisk ketoacidos.

Insulin har många funktioner i kroppen, men två av dem är särskilt betydelsefulla i detta sammanhang, glukagonstyrning i bukspottkörteln och glukosupptag från blodet.

Varje gång en insulinmolekyl når insulinreceptorn på en mottagarcell ”fastnar” den och dras in i cellen. Det betyder att ju mer glukos vi äter desto mer insulin kommer att förbrukas (dras in i målceller) och påverkar därmed inte glukagonproduktion/frisättning.* Att öka mängden insulin för att försöka uppnå en slags säkerhetsmarginal mot ketoacidos är dömt att misslyckas då man som kompensation, för att inte hamna i insulinkoma, måste öka mängden glukogena delar av maten. Om man gör det kommer en betydande del av insulinet att förbrukas för att hålla blodsockret under kontroll utan att påverka glukagonet och så löper det vidare.

Mer glukos (kolhydrater) i maten kräver mer insulin, det som ”blir över” styr glukagonet.

Min hypotes är att de som injicerar insulin bör ”grunda” med ett långtidsverkande alternativ för att undvika att helt förlora kontrollen över glukagonet. Detta även om man använder insulinpump med snabbverkande insulin då det inte är helt ovanligt med böjda slangar och lossnade infusionsset.

Kroppens funktioner är dynamiskt beroende av varandra och alla statiska resonemang är dömda att fallera i det långa loppet.


Beskrivningen ovan är inte fullständig, fler samband finns men i sammanhanget har de liten betydelse.

*) Detta resonemang gäller för diabetiker som huvudsakligen injicerar insulin. För ”friska” reglerar det egna insulinet glukagonproduktionen direkt i de Langerhanska öarna. Den blir därför mycket mer exakt och därför är det värdefullt att ha en egen produktion, om än liten.

 

Varning, detta är ett inlägg för nördar!

Insulin och glukagon är två hormoner som utsöndras från de Langerhanska öarna i bukspottkörteln. Hos en frisk människa samarbetar de för att dirigera sammansättningen av blodets energibärare utifrån tillgång från tarmens innehåll samt befintliga lager som fettväv och muskler.

Glukagon

Klicka på bilden för att se en rörlig stereomodell av glukagon.

I detta samarbete dominerar insulin då betacellerna kan mäta halten av glukos i blodet, blodsocker. Insulin sipprar alltid ut hos friska, men ökar abrupt när blodsockret stiger. Eftersom betacellerna i huvudsak utgör det inre av de Langerhanska öarna och de glukagonproducerande alfacellerna är talrikare i utkanten kommer insulinet, när det passerar på vägen ut, att påverka/hämma glukagonproduktionen.

Alfacellerna har ingen egen förmåga att mäta blodsockret utan styrs via insulin. Styrningen sker mycket lokalt i den betydelsen att det inte finns någon övergripande hämning av alla alfaceller samtidigt, därför kommer även glukagon att sippra fram samtidigt som insulin. Samarbetet är därför inte av/på utan en kontinuerlig förskjutning dem emellan.

Insulin har många uppgifter i kroppen, en av dem är att aktivera kroppens utnyttjande av glukos som energiråvara och/eller dirigera om det till korttidslagring som glykogen i muskler och lever samt längre tids lagring som fettsyror/fettväv. En annan effekt, direkt och/eller indirekt genom att hämma glukagon, är att hämma frisättning av lagrad energi när blodomloppet innehåller mer blodsocker än behövligt.

Glukagonets aktivitet ökar när blodsocker/insulin sjunker, det frigör glukos ur leverglykogen samt stimulerar lever och njurar att producera och frisätta glukos via glukoneogenes, dessutom fria fettsyror och ketoner via fettmetabolismen. Produktionen ökar även av adrenalin samt av några aminosyror, proteiners byggstenar. Viss hämmande effekt kommer av fria fettsyror samt ketoner i blodet. Glukagon kan även produceras av vävnader i magsäcken och en hypotes menar att det centrala nervsystemet har inverkan. Att glukagon är ytterst effektivt för att frisätta glukos från egna lager och vävnader visas av att man i svåra fall av blodsockerfall/insulinkoma ger glukagoninjektioner.

Se även Sockersjuka/diabetes typ 2, vilken är kontroversen i en tidigare blogg.

Hos diabetiker typ 1 är betacellernas insulinproduktion starkt hämmad, även om en relativt nyligen publicerad studie visar att viss egen insulinproduktion kunnat påvisas upp till 40 år efter sjukdomsdebuten. Detta gör att det inte finns tillräckligt aktiv återkoppling för att hämma glukagonproduktionen. När den hämmande effekten minskar/försvinner ökar blodets samlade innehåll av energibärande råvaror långt utöver vad kroppen kan använda. Detta innefattar såväl blodsocker som ketoner. De senare är lätt sura som i begränsade mängder hos friska och välreglerade diabetiker lätt buffras (kompenseras) till normala pH-värden. Om processen tappar sin styrning sjunker pH, ett av kriterierna för diabetisk ketoacidos, DKA, som kännetecknas av höga keton- och blodsockervärden samtidigt. Lägg märke till att de (sky)höga blodsockervärdena inte främst beror på maten, glukosen produceras av och frisätts ur kroppens egna vävnader.

Så över till en variant som fick sitt namn i en studie i BMJ 1973, Euglycaemic Diabetic Ketoacidosis av Munro, Campbell, Cuish och Duncan. Man beskrev 37 fall av 211 av diabetisk ketoacidos som skilde sig från de övriga genom att de inte uppvisade skyhögt blodsocker, de var 16,7 mmol/L eller lägre. Detta till synes udda värde kommer av deras måttenhet och motsvarar 300 mg/100 ml. Euglykemisk tolkas av många som ”normala” blodsockervärden, vilket är långt från sant. Normala blodsockervärden hos friska samt välreglerade diabetiker ligger snarare vid och under 6 mmol/L.

Studien omfattade 11 kvinnor och 6 män, medelålder 18,6 år. Deras medelinsulinanvändning var 101 IU/dygn. En av dem stod för inte mindre än 15 episoder, patienten i fråga diagnosticerades även för cancer i tolvfingertarmen. Ett problem när det gäller tolkningen av studien är att nästan hälften av alla episoder av ketoacidos är kopplade till denne person utan att hans/hennes data särredovisas.

Redan i samband med upptäckten av insulin på 20-talet fann man ett motreglerande ämne som visade sig vara glukagon. Först på 70-talet kom en mer detaljerad beskrivning av dess effekter och jag vill påpeka att den studie jag refererar till inte med ett ord nämner glukagon trots att det med dagens kunskaper är betydelsefullt hos friska och helt avgörande i alla former av diabetisk ketoacidos.

Av alla symtom som redovisades vid euglykemisk ketoacidos, 65 fall och 9 olika, gällde 32 kräkning:

The frequent association with vomiting would suggest that vomiting itself may be a cause, aggravating factor, and a consequence of the metabolic acidosis.

The patients’ mental alertness and in most their ability to walk into hospital, even when severely ketoacidotic, supports the concept that clouding of consciousness is unrelated to the severity of the ketoacidosis but is dependent on severe hyperglycaemia and hyperosmolarity.

Min tolkning: Patienternas vakenhet och förmåga att ta sig till sjukhuset även vid svår ketoacidos stödjer tanken att grumling av medvetandet är orelaterat till ketoacidosens svårighetsgrad men beror av högt blodsocker och bristande vätskebalans.

Så den avslutande meningen:

The department’s policy of encouraging diabetics to adjust their own dose of insulin may, in part, be responsible for our not uncommon experience of euglycaemic ketoacidosis, which has previously attracted very little attention. These patients form one end of the broad spectrum of diabetic metabolic decompensation but are of therapeutic importance because with appropriate management biochemical death should not occur.

Min tolkning: Uppmaningen till diabetiker att själva dosera insulin kan till en del vara skälet till att vår erfarenhet av euglykemisk ketoacidos inte är ovanlig trots att den dragit till sig mycket liten uppmärksamhet. Dessa patienter är en del av det breda spektrum av diabetesens konsekvenser men viktig då en korrekt behandling gör att död inte inträffar.

Min åsikt är att texten skrevs när bekväm och snabb mätning av blodsocker fortfarande inte var vanlig och insulinet doserades mer på en höft. Dessutom betraktades diabetes typ 1 som en brist i blodsockerkontrollen istället för en defekt i styrningen av fettmetabolismen. Märkligt nog lär man fortfarande ut detta vilket gör att såväl vården som diabetiker typ 1 har svårt att greppa fysiologin bakom problemen, man koncentrerar sig på att påverka ett mätvärde, blodsocker, snarare än dess bakgrund och konsekvenser.

Min hypotes, grundat på denna text, är att euglykemisk ketoacidos kommer av nedsatt kontroll av hormonet glukagon i kombination med bristande vätskebalans, varav den senare möjligen är den utlösande faktorn.

Så tänker jag.


Ovanstående beskrivning av insulin, glukagon och deras egenskaper var för sig och i samverkan är inte fullständig, fler faktorer är allmänt kända och andra kan tillkomma.

Skälet till att jag använder denna text är att den är ursprunget till begreppet euglykemisk ketoacidos, syraförgiftning vid ”normala” blodsockervärden.

Krångla inte till det

Sockerbettan har skrivit ett blogginlägg som handlar om fördelarna för en diabetiker typ 1 att tillämpa LCHF. En av de som kommenterar är YAT och jag finner hans/hennes åsikter värda några funderingar och frågor. Jag citerar YAT i direkt anslutning till några av frågorna.

YAT: Baserat på det du skriver mot slutet av din kommentar utgår jag från att du har tillräckliga kunskaper om fysiologin bakom DKA och därför kan hjälpa mig med några svar.

1) DKA (Diabetisk ketoacidos) kan fort bli livsfarligt, där råder ingen tvekan, men det du fokuserar på verkar vara en ovanlig form, euglykemisk ketoacidos, inte för att du nämner ordet här. Det som kännetecknar denna form är att blodsockret anses vara ”lågt” eller ”normalt”. Sällan nämns explicit vilken nivå man avser. Inom vilket spann anser du att blodsockret ligger vid rapporterade fall av euglykemisk ketoacidos?

2) Hur ofta förekommer euglykemisk ketoacidos och hur ofta leder den till döden? Jämför gärna detta med komplikations- och dödsrisken i njursjukdom.

3)Förlitar man då sig på att blodsocker som enda indikation på när och hur mycket insulin man ska ta finns alltså risken att man drabbas av insulinbrist.” Hur vanligt är det att ”normalkostare” förlitar sig på annat än uppmätt blodsockernivå och förvärvad erfarenhet?

4)Problemet uppstår när blodsockernivån ligger stabilt på normala nivåer, vilket sker på ketogen kost, då det ringa kolhydratintaget inte ger upphov till höjd blodsockernivå och därmed inte indikerar när det är dags att ta insulin.” Detta hänger samman med svaret på fråga #1, vilken är nedre gränsen för blodsockernivån vid euglykemisk ketoacidos? Är den så låg att insulintillförsel är opåkallad eller är det ett blodsocker där de flesta väljer att ta insulin?

5) ”Det är också därför som man som D1:a ”rekommenderas” att äta en viss mängd kolhydrater regelbundet för lättare kontrollera och undvika detta.” Vilken är, enligt din mening, denna mängd? I vilka proportioner skall kolhydraternas monosackarider kombineras då enbart glukos påverkar blodsockret direkt medan fruktos och galaktos är betydligt mer oförutsägbara.

6)Man måste alltså ta insulin, s k basinsulin, på tillräcklig nivå även om inte blodsockernivån är förhöjd och behöver korrigeras där av. Det är alltså häri faran ligger. Vet man inte om detta…” Hur mycket instruktioner skulle den ordinäre insulinbehandlade diabetikern behöva för att hantera situationen? Är det mycket mer än att på ett tillförlitligt sätt kunna behärska kolhydraträkning för att bedöma insulinbehovet?

7) Vilken form av insulin anser du att man bör prioritera vid ev. LC-kost, snabb-, långtids eller en blandform?

8) Har du erfarenhet av egen diabetes i någon form, gärna i kombination med LC?

Diabetesmedicin kan förlänga livet

Metformin, en vanlig medicin mot åldersdiabetes, har visat sig ha märkliga egenskaper.
I en studie kunde forskarna visa att den kan öka livslängden hos möss med så mycket som fem procent.

Källa: Expressen

Metformin tillskrivs mängder av goda effekter trots att det är tämligen ”enkelt” uppbyggt.

Metformin

Riktigt så enkelt som i bilden ovan är det inte, på de två ställen där fyra linjer möts måste du tanka dig att det finns en kolatom och där enkla linjer bara slutar finns också en kolatom med vardera tre väteatomer, metylgrupper.

  • Metformin dämpar leverns glukosproduktion, särskilt tydligt hos diabetiker. En ”medeldiabetiker” typ 2 (sockersjuk) har vanligen en glukosproduktion som är tre gånger högre än hos en frisk och metformin kan minska denna med en tredjedel. (Tolkningar av Engelska Wikipedia)
  • Dessutom minskar glukosupptaget från tarmen, något som märks genom ökad gasproduktion samt ”lösare mage”. Dessutom motverkar användningen av metformin glukosfrisättning som beror av insulinets ”motvikt”, hormonet glukagon. (Samma källa)

Från Expressens Faktaruta om metformin:

Metformin syntetiserades första gången på 1920-talet, men blev inte uppmärksammat förrän 1957 då den franske läkaren Jean Sterne visade att det kunde användas för behandling av åldersdiabetes.
Metformin har varit i allmänt bruk sedan 1960-talet, och är i dag det vanligaste läkemedlet mot åldersdiabetes i de flesta länder i världen. Det används särskilt ofta när patienterna är överviktiga.
På senare år har det framkommit att metformin kan höja livslängden hos rundmaskar. Den nya studien visar att även däggdjur kan leva längre om de ges rätt metformin.
Källa: Nature Communications (TT)

Tja, så nyligt är det inte, jag skrev på gamla MatFrisk Blogg om detta runt 2008:

Detta enligt en studie i Cell Metabolism av Seung-Jae Lee, Coleen T. Murphy och Cynthia Kenyon, ”Glucose Shortens the Life Span of C. elegans by Downregulating DAF-16/FOXO Activity and Aquaporin Gene Expression

”Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on life span itself…..

…Together, these findings raise the possibility that a low-sugar diet might have beneficial effects on life span in higher organisms.”

Nu skall vi inte dra alltför långtgående slutsatser av detta eftersom Caenorhabditis elegans, på vilket försöket utfördes, är en liten rundmask. Den är populär i diabetesforskningskretsar eftersom den är tålig, lätt att studera, har en snabb reproduktionscykel (=kortlivad) och trots sin ”enkla uppbyggnad” har ett insulinsystem som har god likhet med däggdjurens. Dessutom omfattas de inte av etiska regler och andra betänkligheter.

I försöket har man tillfört 2E% D-glukos och noterade att livslängden förkortades med 1/5. Redan 0.1E% resulterade i en signifikant förkortad livslängd.

Ur Expressens artikel:

”Metformin, som har använts vid behandling av åldersdiabetes sedan 1960-talet, har tidigare kopplats samman med minskad risk för cancer och hjärt- och kärlsjukdomar.”

”Forskarna, som har letts av åldersforskaren Rafael de Cabo vid National Institutes of Health i USA, är inte hundraprocentigt säkra på varför metformin har den här effekten, men de påpekar att den i viss mån liknar effekterna av en diet där kalorimängden skurits ned kraftigt – farliga syreföreningar som kan öka den oxidativa stressen och skada celler och organ minskar i omfattning i kroppen, och halterna av antioxidanter ökar. Allt detta leder till att livslängden ökar.”

Den studie som Expressen hänvisar till gäller mushannar och kan därför inte direkt överföras till människor.

Min hypotes ligger i närheten, men eftersom metforminets uppmätta hämmande effekter gäller glukos så anser jag att det är minskningen av glukos i blodet, blodsocker, som har betydelse. Om det stämmer är kolhydratreducering (ex. LCHF) av vår kost ett alternativ väl värt att pröva.