Arkiv för kategori ‘Insulin’

Vårt blod innehåller en stor mängd ämnen i mängder från något eller några picogram (10-12gram) för t.ex. vitaminer och upp till i storleksordningen knappa kilot för gastransportören hemoglobin. (Räknat på totala blodmängden). Några av de mest omdebatterade ämnena (HDL, High Density Lipoprotein och triglycerider) finns i storleksordningen något gram per liter blod. (Se grafiken där jag valt skalan som anger milligram respektive gram per liter)

Blod - grafik

Källa Om du klickar på länken eller bilden ser du att detta är en liten del av helheten.

Sedan forskarna i början av 50-talet lyckades förenkla laboratorierutinerna för att mäta lipoproteiner (LDL, HDL, VLDL och andra med -DL) blev de populära att bygga diverse hypoteser och teorier runt. Eftersom de vanligen knappast ger symtom i vardagslivet är de inte så lite mystiska och skrämmer många att äta diverse preparat som industrin med glädje tillhandahåller.

Mängder av epidemiologiska (observations-) studier har genomförts för att visa de förment goda effekterna, men allt eftersom visade sig den uppgiften vara mycket svår. Vid närmare betraktande hände det att en ”kärlskyddande” effekt med råge uppvägdes av att den totala dödligheten steg i än större utsträckning vilket var ett föga användbart försäljningsargument. Fortfarande, 15 år in på det nya seklet och efter tusentals studier, finns inga slutgiltiga fakta att tillgå. Som jag ser det beror det på att man försöker räkna päron på ett äppelträd.

Linköpingsprofessorn Anders G Olsson har byggt sig en plattform från vilken han argumenterar för diverse preparat, i hans senaste jävslista finns Amgen, AstraZeneca, Lilly, MSD, Pfizer, Roche och Sanofi-Aventis.

I Läkartidningen skriver han en artikel med rubriken Triglycerider – nygammal riskfaktor för hjärt–kärlsjukdom med underrubriken Subgruppsanalys visar på betydelsen efter akut koronart syndrom.

Innan vi fortsätter kan det vara intressant att en subgruppsanalys (vanligen?) görs i efterskott när man anar att det innehåller material man tror sig ha fördel av, något som ser ut som en användbar nål i en höstack. På sin höjd kan detta bidra till att skapa funderingar och kanske hypoteser, ännu inte utgöra delar av teorier.

Hans artikel är oerhört komplex och svåråtkomlig, men ett och annat är förståeligt:

Att blodets halt av triglycerider avspeglar ett viktigt skeende i uppkomsten av hjärt–kärlsjukdom har länge varit känt, inte minst tack vare svenska arbeten.

Vi kompletterar detta med ett citat från en senare del av artikeln:

Triglycerider kan knappast vara en orsaksfaktor, eftersom det ateromatösa placket inte innehåller triglycerider i nämnvärda mängder och dessa därmed rimligen inte kan bidra till den aterosklerotiska sjukdomprocessen.

Min tolkning av dessa två påståenden är att triglycerider (fetter) i blodet inte är en orsak till kärlsjukdomar men samvarierar med risken. Av det skälet är det förmodligen en fördel att inte visas ha höga halter av triglycerider i blodet. Jag återkommer till detta nedan.

Låg nivå av HDL-kolesterol (”goda kolesterolet”) visades vara en stark prospektiv prediktor (förutsägande variabel) för kranskärlssjukdom, och högt HDL-kolesterol visades ha skyddande effekt. Då det är en negativ korrelation mellan triglyceridhalt och HDL-kolesterol i blodet tillskrevs lågt HDL-kolesterol patogenetisk (sjukdomsskapande) betydelse, sannolikt på bekostnad av triglyceridernas betydelse.

Om detta är Anders G Olssons åsikt eller hans beskrivning av historiken är inte helt klart. Mina förtydligande inom paranteser.

Ett skäl kan ha varit att HDL-kolesterolkoncentrationen är ganska konstant i blodet, medan triglyceridnivån uppvisar stor variabilitet över tid. Det är då svårare att med gängse statistiska metoder fånga betydelsen av triglycerider som riskfaktor.

Min tolkning: Triglycerider i blodet är starkt beroende av kosten, men på ett för många traditionalister överraskande sätt. Om man inte tar med kostens sammansättning bland parametrarna och låter dem ingå i de statistiska övervägandena blir det naturligtvis svårt att ”fånga betydelsen av triglycerider”. Återkommer nedan.

Så ett citat som jag väljer att tolka positivt:

I en stor mendelsk (en statistisk metod att försöka se igenom rätt svårförståeliga data) randomiseringsstudie från Danmark bekräftades den ursprungliga observationen att lågt HDL-kolesterol var starkt associerat till ökad risk för hjärtinfarkt. Denna statistiska metod har tidigare beskrivits i Läkartidningen. Däremot hade inte genetiskt betingat lågt HDL-kolesterol samma effekt, vilket tyder på att lågt HDL-kolesterol inte orsakar hjärtinfarkt utan är en markör för något annat.

Min tolkning: HDL är i sig inte en orsak utan ett mätvärde som kan vara kopplat till (statistiska) risker.

Hypertriglyceridemi (höga triglycerider) kan således vara en riskmarkör för förekomst av aterogena intermediära lipoproteiner och lipoproteinrester men också en riskfaktor i sig.

Här använder han ordet lipoproteinrester utan att förklara vad det innebär. Min tolkning är att det är de s.k. små täta lipoproteinerna (”small dense LDL”) som uppstår när kroppen gradvis tagit sin del av det ursprungliga innehållet. De råkar ha så misslagom egenskaper (tas ogärna upp av levern och glykeras/oxideras i blodet) och kan med tiden bygga upp plack i blodkärlen.

Anders G Olsson har några preparatberoende visioner för att åtgärda höga triglycerider (som enligt honom inte i sig är en orsak, se andra citatet).

Biokemiska och fysiologiska observationer har sedan länge visat att en kolhydratrik kost ger förhöjd produktion av triglycerider i levern. Det är helt logiskt då kolhydrater från mat inte är essentiella (livsnödvändiga) och inte heller kan lagras i kroppen i större mängd än cirka 2000 kcal. Av detta finns i storleksordningen 1/4 i muskelglykogen och kan inte användas annat är i de celler där de lagras. Resten finns i leverglykogen och kan exporteras via blodet till behövande celler.

Framför allt kolhydratätare med låg till måttlig fysisk aktivitet har därför begränsad flexibilitet i glykogenförråden (bara delar av det totala glykogenförråde omsätts regelbundet) och måste lagra energi från kolhydrater på ett för kroppen hanterligt sätt. Detta innebär att levern gör triglycerider (fett), dels för omgående export via blodet, alternativt för lagring på plats i levern för senare transport i blodet. Utnyttjas denna fettlagring i för stor utsträckning riskerar man leverförfettning.

Om man äter en högkolhydratkost ställer kroppen in sig efter de förutsättningarna vilket innebär en högre insulinproduktion, stimulerad fettlagring, hämmad fettanvändning och att blodets glukos står för majoriteten av kroppens energiråvaror. När så en sådan kolhydratätare fastar inför ett blodprov för att mäta innehållet av lipider inklusive triglycerider får h*n ett så lågt blodsocker att kroppen hinner börja exportera de upplagrade triglyceriderna som energi.

Helt logiskt blir kolhydratätarens triglycerider därför högre än LCHF-are som ofta/vanligen ligger lågt. Bland LCHF-are rapporteras HDL ofta som högt och sett tillsammans ger det en ur kärlsynpunkt mycket fördelaktig profil.

Min åsikt är att Anders G Olsson siktar på att behandla mätvärden istället för att åtgärda orsakerna. Lite som att böja ner visaren på en bils hastighetsmätare för att hindra hastighetsberoende olyckor.

Diabetesmedicin kan förlänga livet

Metformin, en vanlig medicin mot åldersdiabetes, har visat sig ha märkliga egenskaper.
I en studie kunde forskarna visa att den kan öka livslängden hos möss med så mycket som fem procent.

Källa: Expressen

Metformin tillskrivs mängder av goda effekter trots att det är tämligen ”enkelt” uppbyggt.

Metformin

Riktigt så enkelt som i bilden ovan är det inte, på de två ställen där fyra linjer möts måste du tanka dig att det finns en kolatom och där enkla linjer bara slutar finns också en kolatom med vardera tre väteatomer, metylgrupper.

  • Metformin dämpar leverns glukosproduktion, särskilt tydligt hos diabetiker. En ”medeldiabetiker” typ 2 (sockersjuk) har vanligen en glukosproduktion som är tre gånger högre än hos en frisk och metformin kan minska denna med en tredjedel. (Tolkningar av Engelska Wikipedia)
  • Dessutom minskar glukosupptaget från tarmen, något som märks genom ökad gasproduktion samt ”lösare mage”. Dessutom motverkar användningen av metformin glukosfrisättning som beror av insulinets ”motvikt”, hormonet glukagon. (Samma källa)

Från Expressens Faktaruta om metformin:

Metformin syntetiserades första gången på 1920-talet, men blev inte uppmärksammat förrän 1957 då den franske läkaren Jean Sterne visade att det kunde användas för behandling av åldersdiabetes.
Metformin har varit i allmänt bruk sedan 1960-talet, och är i dag det vanligaste läkemedlet mot åldersdiabetes i de flesta länder i världen. Det används särskilt ofta när patienterna är överviktiga.
På senare år har det framkommit att metformin kan höja livslängden hos rundmaskar. Den nya studien visar att även däggdjur kan leva längre om de ges rätt metformin.
Källa: Nature Communications (TT)

Tja, så nyligt är det inte, jag skrev på gamla MatFrisk Blogg om detta runt 2008:

Detta enligt en studie i Cell Metabolism av Seung-Jae Lee, Coleen T. Murphy och Cynthia Kenyon, ”Glucose Shortens the Life Span of C. elegans by Downregulating DAF-16/FOXO Activity and Aquaporin Gene Expression

”Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on life span itself…..

…Together, these findings raise the possibility that a low-sugar diet might have beneficial effects on life span in higher organisms.”

Nu skall vi inte dra alltför långtgående slutsatser av detta eftersom Caenorhabditis elegans, på vilket försöket utfördes, är en liten rundmask. Den är populär i diabetesforskningskretsar eftersom den är tålig, lätt att studera, har en snabb reproduktionscykel (=kortlivad) och trots sin ”enkla uppbyggnad” har ett insulinsystem som har god likhet med däggdjurens. Dessutom omfattas de inte av etiska regler och andra betänkligheter.

I försöket har man tillfört 2E% D-glukos och noterade att livslängden förkortades med 1/5. Redan 0.1E% resulterade i en signifikant förkortad livslängd.

Ur Expressens artikel:

”Metformin, som har använts vid behandling av åldersdiabetes sedan 1960-talet, har tidigare kopplats samman med minskad risk för cancer och hjärt- och kärlsjukdomar.”

”Forskarna, som har letts av åldersforskaren Rafael de Cabo vid National Institutes of Health i USA, är inte hundraprocentigt säkra på varför metformin har den här effekten, men de påpekar att den i viss mån liknar effekterna av en diet där kalorimängden skurits ned kraftigt – farliga syreföreningar som kan öka den oxidativa stressen och skada celler och organ minskar i omfattning i kroppen, och halterna av antioxidanter ökar. Allt detta leder till att livslängden ökar.”

Den studie som Expressen hänvisar till gäller mushannar och kan därför inte direkt överföras till människor.

Min hypotes ligger i närheten, men eftersom metforminets uppmätta hämmande effekter gäller glukos så anser jag att det är minskningen av glukos i blodet, blodsocker, som har betydelse. Om det stämmer är kolhydratreducering (ex. LCHF) av vår kost ett alternativ väl värt att pröva.

Våra celler använder ATP, adenosintrifosfat, samt i viss utsträckning ADP, (adenosindifosfat) för sin energiförsörjning. Dessa produceras i stor mängd, i storleksordningen halva till hela kroppsvikten per dygn, i mitokondrier som finns i många men inte alla celler.

Fettsyror, ketoner och glukos är några energibärare som cellerna tar upp, processar/förädlar för att sedan mata mitokondrierna. I några få av kroppens delar är det enbart glukos som fungerar, de röda blodkropparna, delar av njurarna samt en mindre del av hjärnan (uppskattningsvis 1/4 – 1/3 av dess energibehov).  I och för sig bör jag kanske lägga till att även cancerceller har ett kraftigt ökat glukosbehov, då deras mitokondrier vanligen är skadade och overksamma.

Fett (triglycerid/triacylglycerol*) levereras via vattenlösliga lipoproteiner** (någon av de transportfarkoster som slarvigt kallas ”kolesterol”). En komplett triglyceridmolekyl kan inte passera via cellmembranet in i målcellen utan måste först delas upp i sina beståndsdelar. Enzymet lipoproteinlipas (LPL) bryggar över mellan lipoproteinet och mottagarcellen och i samarbete med coenzymet apoC-II*** ”petar det in” en vattenmolekyl mellan vardera fettsyran och glycerolmolekylen som då delar sig. Detta kallas hydrolys**** där hydro syftar på vatten och lys betyder spjälka.

De avspjälkade fettsyrorna transporteras via lipidtransportörer i SLC-27-familjen in i cellen medan det vattenlösliga glycerolet sköljs iväg via blodet och återvinns i levern till glukos.

En fettsyra har, liksom korven, två ändar. Metyländen består av tre väteatomer bundna till en kolmolekyl. Det som liknar en blixt symboliserar att fettsyran fortsätter vidare. Molekylsnutten -CH3 dyker upp i många sammanhang i kroppens kemi och kan betraktas som en avslutning, den sätter punkt för en kolkedja.

Fettsyrors metylände Omega

Den andra är karboxyländen (nedan) som består av en kolmolekyl, två syre och en vätemolekyl. En av syremolekylerna samt vätet sitter samman i en hydroxylgrupp (OH). Även här har blixtsymbolen samma betydelse.

Fettsyrors karboxylände Alfa

Mellan dessa två molekylsnuttar finns ett varierande antal kolmolekyler bundna till väte. OH-gruppen är av särskilt stort intresse då den kopplar till glycerolmolekylen för att bygga en triglycerid, en komplett fettmolekyl. Snutten -COOH är en vanlig kopplingspunkt mellan diverse ämnen och när en sammankoppling görs, en förestring, frigörs en vattenmolekyl, H2O. Se illustrationen nedan.

Kortkedjiga fettsyror kan, med hjälp av bärarproteinet albumin, transporteras direkt av blodet och kommer därför omgående att föras från tarmpaketet via blodet och ut i vävnader utan vidare processande. Detta gör de kortkedjiga fettsyrorna (särskilt C8:0 och C10:0) i kokosfett till en oerhört snabbverkande energiråvara.

Ketoner bildas i levern med fett/fettsyror som utgångspunkt. De är vattenlösliga, transporteras i blodet och kan nå alla kroppens celler. De passerar utan vidare blod-hjärnbarriären och försörjer vid behov större delen av hjärnan med energi. Då ketoner har mindre andel syreatomer än glukos för samma mängd energi är dess verkningsgrad betydligt större (25-28-30%) än glukos vid drift av mitokondrierna och lämnar mindre mängd ”avfall” (koldioxid) efter sig. Ketoner gör sannolikt att de som fastar efter några dagar känner sig upprymda, euforiska och ”fulla av energi”.

Fettsyror som levereras in i en fettcell byggs åter upp till triglycerider/triacylglycerol, kompletta fettmolekyler. Till detta krävs en (nybildad) glycerolmolekyl, byggd av glukos. Dessa kommer in i fettcellen via insulinoberoende GLUT1 (Glukostransportör 1) eller, om blodsockret är förhöjt, insulinaktiverat GLUT4. När alla komponenter finns på plats binds tre fettsyror, via sina OH-grupper, till glycerolet genom förestring.

Glycerol - fettsyror

Bilden: Atomerna inne i boxarna kommer dels från glycerolet till vänster och dels från fettsyrornas OH-grupper. De kombineras vid förestringen till tre vattenmolekyler som avges, vilket minskar utrymmesbehovet inne i fettcellen.

Insulin aktiverar LPL samtidigt som det gör större mängder glukos tillgängligt för att bilda glycerol inne i cellen. Insulin skyndar därför på förestring/fettbildning och detta bör vara bekant för diabetiker typ 1 som får fettkuddar där man injicerat alltför ofta. Det är även skäl till att diabetiker typ 2, sockersjuka, i 80% av fallen drar på sig en avsevärd övervikt under det fleråriga inledningsskedet av sjukdomsutvecklingen innan diagnosen.

När fettmolekylen utnyttjas sker det omvända men med andra aktörer. Inte heller nu kan en komplett triglycerid/triacylglycerol tränga ut och om så skulle ske så är ändå en fettmolekyl inget som blodet kan transportera. Därför träder ett annat enzym, Hormonkänsligt lipas (HSL), in i handlingen inne i fettcellen. HSL aktiveras av hormonerna adrenalinnoradrenalin och glukagon och inleder hydrolysen**** av fettmolekylen till separata fettsyror och glycerol. När HSL avskiljt den första fettsyran fullföljs hydrolysen i snabb följd av diglyceridlipas och monoglyceridlipas. De två senare enzymerna är långt snabbare och tillgången till HSL bestämmer därför reaktionshastigheten.

  • Insulin deaktiverar HSL och är ett effektivt hinder för att utnyttja kroppens fettväv som energikälla.

Frigjorda fettsyror passerar ut genom cellmembranet och glycerolen sköljs som vanligt iväg via blodet till levern för återvinning. Fettsyrorna hämtas upp av blodets transportproteiner, albumin. Detta kit kallas märkligt nog fria fettsyror och transporteras runt i blodet till dess de stöter på en cell som behöver dem.

Beskrivningen är långt ifrån fullständig.


*) En fettmolekyl kallas ofta triglycerid men även triacylglycerol som är en kemiskt korrektare benämning. Tri står för tre, acyl för fettsyra och glycerol för just glycerol.

**) Dessa kan vara stora kylomikroner, IDL (som är delvis tömda kylomikroner) eller någon av LDL-fraktionerna.

***) apoC-II utgör en del av lipoproteinhöljet och fungerar som ett medlevererat specialverktyg, ungefär som IKEA:s sexkantnyckel.

****) Hydrolys innebär att ett enzym spjälkar molekyler genom att sätta in en vattenmolekyl i ”skarven”. Det omvända förloppet kallas förestring.

Två huvudvarianter plus mellanformer ryms inom begreppet diabetes. Den förste att beskriva sjukdomen i skrift under namnet Diabetes Mellitus var Thomas Willis, en av de första i Royal Society, och det skedde 1674 i Pharmaceutice Rationalis. Han noterade att det bland hans ytterst välbeställda patienter började dyka upp en åkomma som innebar ett kraftigt förhöjt urinflöde med söt smak. I läkarnas dåtida analysarsenal ingick att smaka på urin. Inte förenat med någon större risk, urin är normalt helt steril, sannolikt beroende på en kraftig produktion av fria radikaler i urinsystemet.

  • Willis skapade namnet av tre ord, ett grekiskt och två latinska. Diabetes kommer från grekiskan och betyder ”stort urinflöde”.  Mel (lat.) står för honung och itis (lat.) inflammation. Fritt tolkat: ”Inflammation med stort flöde av honungssöt urin”

Han kunde lika väl ha valt det mer rättframma polyuria saccharitis, latin för sockerinflammation med stort urinflöde. Men gjorde det inte och han hade sina skäl. Det hör till saken att han var en högt aktad societetsläkare och de patienter där han observerade symtomen idkade ofta omfattande handel med just socker.

Redan på den tiden var sockerlobbyn stark. Sockerförbrukningen var liten men ändå betydande i de högre samhällsklasserna. De som styrde handeln och såg den framtida vinstpotentialen var samtidigt hans kundunderlag, alltså valde han att hålla en låg profil för att inte i onödan störa relationerna med sina patienter. Skulle den rättframmare beteckningen (ungefär sockersjuka) bli allmänt använd skulle det naturligtvis skada sockerhandlarna. Han valde alltså en mjuk linje, beskrev den som honungs- snarare än socker-. Det senare skulle ha varit alltför provokativt. Följ pengarna från fickan till källan.

Sugar Blues

Källa: ”Sugar Blues” av William Duffy ISBN 0-446-34312-9, första upplagan 1976, denna: 1993

En del diabetiker tycker att deras sjukdom bagatelliseras när den kallas ”sockersjuka”. Den blir liksom mindre allvarlig och sockersjuka låter inte lika ”fint” som diabetes (mellitus) typ 2. Att termen simpelt nog beskriver sjukdomens symtom upptäcker den som kan lite latin och grekiska. Eller läser i ett lexikon.

Sockersjuka, åldersdiabetes eller diabetes typ 2 innebär att man inte längre använder glukos i blodet, blodsocker, som energiråvara i full utsträckning. När glukoskoncentrationen i blodet hamnar över njurtröskeln (8 – 12 mmol/L) kommer överskottet, så gott det går, att sköljas ut i urinen som då blir mycket riklig och smakar sött. Detta sker i störst utsträckning när man äter kolhydratrik mat, till exempel socker. Detta är den helt dominerande varianten och gäller fler än 8 av 10 alla som kallas diabetiker. Symtom och långtidsprognos försämras när de äter kolhydrater/socker* och det är alltså fullt logiskt att använda begreppet sockersjuk.

Det som i dagens läge är annorlunda är att begreppet åldersdiabetes börjar bli mindre relevant. Sockersjuka har normalt en utveckling över många år och visade sig förr sent i livet men nu uppträder den så tidigt att medicinindustrin, i detta fall danska Novo Nordisk, vädrar en ny kundkategori; barn.

När vi ätit omvandlas en del av maten till socker i blodet. För att flytta sockret ifrån blodet till muskler och andra celler i kroppen behövs ett hormon som heter insulin. Har ditt barn typ 2-diabetes kan hans/hennes kropp inte tillverka tillräckligt mycket insulin som behövs och/eller inte använda det på rätt sätt. Mängden socker i barnets blod blir då för hög, och barnet behöver medicin. Den här studien undersöker hur en ny medicin påverkar blodsockret och vikt hos barn och ungdomar med typ 2-diabetes.

Källa: Novo Nordisk, Studie för barn och ungdomar med typ 2-diabetes

För att delta i studien skall de vara mellan 10-16 år och 11 månader och ha fått diagnosen diabetes typ 2. Här framgår med all önskvärd tydlighet att begreppet åldersdiabetes inte längre är fullt relevant men att socker är ett problem.

Bakgrund, först en välfungerande ickediabetiker: 

Bukspottkörtelns betaceller producerar och frisätter insulin, ett hormon med flera funktioner, här tre av dess många effekter.

  • Den mest omtalade är att signalera till lever-, fett- och muskelceller att snabbare släppa in överskott av glukos från blodet, man säger att “insulin sänker blodsockret”. Betacellerna har förmåga att mäta blodets glukosnivå och reagerar därefter, men med viss fördröjning.
  • Genom att släppa in glukos i lever- och fettceller stimuleras fettlagring.
  • Stegrad insulinhalt blockerar fettmetabolismen genom påverkan på alfacellernas glukagon, se nedan. 

Alfaceller, som ligger tätt intill betacellerna, producerar hormonet glukagon som stimulerar fettmetabolism och frisättning av glukos från leverns glykogenförråd. Glukagon har alltså till stor del motsatt effekt som insulin, det ökar energinivån i blodet i form av fria fettsyror, ketoner och glukos när energitillförseln från tarmpaketet minskar.

  • Alfaceller har ingen förmåga att mäta blodsocker utan reagerar istället på hur mycket insulin som passerar i deras omedelbara närhet. När blodsockerhalten är “hög” ökar insulinet vilket nedreglerar alfacellerna och glukagonproduktionen minskar. Detta då blodets energimängd redan är nog så hög och en varaktig glukoshalt på 6 mmol/L eller mer på sikt ger kärl- och andra skador.
  • När blodsockret sjunker minskar insulinbehovet, glukagonproduktionen kommer gradvis igång för att återställa blodets energinivå till rimliga och önskvärda nivåer.  Utöver detta finns ytterligare hormoner som höjer blodsockret, bl.a. stresshormonerna adrenalin och kortisol.
  • Adrenalin är ytterst snabbverkande och höjer momentant vår prestationsförmåga inför flykt eller angrepp, men dess verkan avklingar tämligen snabbt, i storleksordningen någon timme. Kortisol är betydligt mer långvarigt.

Hormonet utsöndras som svar på signaler från det sympatiska nervsystemet och står därför utom direkt och medveten kontroll. Även sådant som panikångest ökar adrenalinet.  Allt detta och mer därtill sker snabbt, effektivt och vältajmat hos en ickediabetiker. Effekten ger ett blodsocker med rimliga variationer, tillfredsställande energitillgång i blodet och därför måttliga och lättstyrda matvanor utan viktuppgång. Den som har förmånen att ha en i detta sammanhang välfungerande kropp kan vara oförstående för de som har problem och ger därför gärna rådet “Ät mindre och spring mer!”  

Om man äter onödigt mycket blodsockerhöjande mat (kolhydrater = glukos, stärkelse) så når man lätt eller passerar gränsen för området där styrningen fungerar optimalt. Insulin dominerar totalt över glukagonproduktionen och kan därmed störa kroppens egen nödvändiga, naturliga och balanserande frisättning av redan lagrad energi från fett i lever, fettväv samt från leverglykogen. Insulinet håller även “glukosisläppen” (GLUT4) till muskler och fettceller öppna onödigt länge vilket tillsammans gör att blodsockret kan sjunka under det önskvärda vilket ger en blodsockerdipp, vilket kroppen upplever som energibrist och ger hungersug. 

Personer med sockersjuka/diabetes typ 2 kan i flertalet fall bli kvitt medicinering genom att äta en kolhydratfattig kost. Den räddhågade kan ju alltid dra ner på kolhydraterna lite försiktigt och gradvis minska sin blodsockermedicinering, har man möjlighet att mäta blodsockret desto lättare går det.

Diabetes typ 1 är en helt annan sjukdom där kroppen saknar förmåga att reglera ner frisättning av hormonet glukagon som i sin tur eldar på fettmetabolismen, den helt avgörande skillnaden. Rena typ ettor är färre än 2 av 10, möjligen under 1 av 10.

Om kroppens förmåga att producera insulin minskar eller helt försvinner, som hos diabetiker typ 1, upphör kroppens förmåga att mäta blodsockret, reglera fettmetabolismen samt sända signaler till fett- och muskelceller att ta upp överskottsblodsocker. De två första egenskaperna, mätning och reglering, är överlägset viktiga då de motverkar uppkomsten av diabetisk ketoacidos.

  • Diabetisk ketoacidos kommer av en ostyrd fettmetabolism som översvämmar blodet med energi i form av ketoner samt outnyttjat glukos vilket kan avancera till att bli direkt livshotande redan inom timmar/dagar. En diabetiker typ 1 som inte har tillräckligt insulin från kvarvarande egen produktion + tillfört för att hantera alfacellernas glukagonproduktion avlider av detta långt innan förhöjda blodsockerhalter blir problematiska.

Den överlägset farliga komponenten i diabetes typ 1 är tveklöst avsaknaden av styrd fettmetabolism. 

Utöver sockersjuka/åldersdiabetes/diabetes typ 2 och störd fettmetabolism/diabetes typ 1 finns LADA (Latent autoimmune diabetes of adults) och MODY (Maturity onset diabetes of the young). Det är heller inte ovanligt att sockersjuka med undermålig behandling ”bränner ut” sina betaceller (betacellsvikt) och drar på sig den ultimata diabetesupplevelsen; de saknar tillräckligt insulin i kombination med bristande förmåga att hantera glukos som energiråvara.

Det är mycket otillfredsställande att två väsentligen skilda åkommor får likartade namn, men möjligen ingår det i en långsiktig vision av insulinproducenter att skapa en sammanhållen behandlingsstrategi för att drastiskt öka kundunderlaget. Tyvärr skapar det även inbördes kontroverser mellan sockersjuka som förvärvat sina problem på egen hand samt diabetiker typ 1 som oförskyllt ”drabbats av en djefla otur”**.

Själv använder jag både sockersjuk och diabetes typ 2 men det förra helst efter att ha förklarat vad åkomman består i. En diabetiker typ 2 har, som jag ser det, rätt att kalla sin åkomma efter behag utan att någon med en annan sjukdom har tolkningsföreträde.


*) Alla kolhydrater som ger nämnvärda tillskott av energi i maten består av tre enkla sockerarter, glukos, fruktos och galaktos. De finns i ett antal olika kombinationer i den mat vi äter, men först efter att kolhydraterna brutits ner till sina beståndsdelar kan de passera in till blodet i tunntarmen.

**) Även om den ärftligt beroende komponenten är låg i absoluta tal så är den påtaglig: Risken för diabetes typ 1 för den som inte har sjukdomen i familjen är nere på rikets normalnivå, 0,2%. Om mamman är anlagsbärare stiger risken 7,5 gånger, är pappan anlagsbärare ökar risken 30 gånger och har ett syskon diabetes typ 1 är risken 25 – 50 gånger större. Detta om något säger att risken för att få diabetes typ 1 i familjer med manifest typ 1 ökar avsevärt och därför kan kallas ärftligt beroende. Se inlägget Dubblas diabetesrisken i parrelationer?

Hälften av de patienter som opererats för övervikt med gastric bypass löper förhöjd risk att drabbas av episoder med lågt blodsocker. För de som opererats med metoden duodenal switch är risken ännu högre. Detta visar en studie på Akademiska sjukhuset där patienter följts upp ett till två år efter operation. Enligt forskarna bör alla överviktspatienter som drabbas av blodsockerfall efter sådana ingrepp rekommenderas anpassad kost och vid behov läkemedelsbehandling.

– Det är känt att personer som genomgått överviktskirurgi trots minskad total dödlighet har en ökad risk att avlida i olyckor vilket kan ha koppling till episoder med lågt blodsocker, så kallad hypoglykemi. Vår slutsats är att man efter operation bör rekommendera anpassad kost och vid behov behandling med nya inkretinpreparat, läkemedel som ökar nivåerna av vissa tarmhormoner efter måltid, till patienter som drabbats av blodsockerfall, framhåller Niclas Abrahamsson, diabetesläkare och ansvarig för patientstudien.

Källa: Pressmeddelande från Uppsala universitet, Akademiska sjukhuset 2015-05-07

Då vården inte knäckt fetmakoden tillgriper man istället ”svärdet” för att lösa den Gordiska knuten. Varje år opereras cirka 8 000 personer med förhoppningen att slippa övervikt.

Alexander_cuts_the_Gordian_KnotAlexander hugger sönder den Gordiska knuten i ilskan över att inte med sitt intellekt klara av den.

I den aktuella studien undersöktes patienter ett till två år efter överviktsoperation på Akademiska sjukhuset. Hälften av dem som opererats med metoden gastric bypass och 78 procent av dem som opererats med metoden duodenal switch hade episoder med lågt blodsocker, uppmätta med kontinuerlig glukosmätning under tre dygn.

Patienter som genomgår gastric bypass-operation har ett BMI på över 35. Lite förenklat innebär ingreppet att man krymper magsäcken och kopplar bort tolvfingertarmen. För extremt överviktiga, med ett BMI över 50, finns även en annan metod kallad duodenal switch som innebär att man både krymper magsäcken och kraftigt kortar tunntarmen.

Den kliniska studien (AMBOX) publicerades i den vetenskapliga tidskriften European Journal of Endocrinology den 21 april 2015.

Vad innebär ”…anpassad kost…” i detta sammanhang? Jag har nyss mailat dr. Abrahamsson och frågat.

Alla former av diabetes innebär nedsatt förmåga att hantera glukos som energiråvara, men av olika skäl. De två mest distinkta varianterna är typ 1 där insulinproduktionen är starkt eller helt nedsatt redan från början och typ 2 där effekten av insulin är starkt nedsatt även om mängden insulin kan vara betydande.

All energi som vi distribuerar i vår kropp går genom vårt blod. Det finns flera olika energibärare med en fördelning beroende på de förutsättningar som råder. Insulin är ett hormon som bland annat  signalerar till levern att dämpa glukosfrisättning från leverglykogen för att istället ställa om till fettinlagring.

Detta innebär med all logik att andelen glukos, blodsocker, sinar om man inte tillför mer från tarmpaketet vilket resulterar i ”lågt blodsocker”, hypoglykemi. Men, det har ingen som helst betydelse om det fortfarande finns tillräckligt med energibärare i form av triglycerider i VLDL, fria fettsyror som lotsas runt i blodet av proteinet albumin samt de vattenlösliga ketonerna, främst beta-hydroxybutyrat. Alla dessa har sitt ursprung i fett från våra vävnader eller den mat vi äter.

Men om den mat vi äter kräver insulin så mattas fettmetabolismen av och hypoglykemin blir betydelsefull. Då kommer min andra fundering. Hur motiverar dr. Abrahamsson användningen av inkretiner som behandlingsmetod?

Inkretiner* är hormoner från tarmen som frisätts när man äter. Gör att levern minskar frisättningen av glukos och frisättningen av insulin ökar. (Min fetstil) Som jag ser det försämras förutsättningarna för den inkretinbehandlade som råkat ut för hypoglykemi i kombination med hämmad fettmetabolism.


*) Läs om inkretiner på engelska Wikipedia samt Riktlinjer för diabetes i Kalmar län

Länk: Kostintaget normaliseras efter gastric bypass-operation

Länk: ROUX‐en‐Y GASTRIC BYPASS AS TREATMENT FOR MORBID OBESITY – Studies of dietary intake, eating behavior and – meal‐related symptoms – Anna Laurenius

Fruktos, som också kallas fruktsocker, uppmuntrar hjärnan att fortsätta äta och stillar inte hunger eller sötsug på samma sätt som glukos, visar ny forskning. Försökspersoner var till och med villiga att betala pengar för att få äta onyttig mat efter att de fått i sig fruktos.

Källa: svt.se, Därför ökar fruktsocker vår aptit

Låt oss läsa lite i studiens* abstract:

Prior studies suggest that fructose compared with glucose may be a weaker suppressor of appetite, and neuroimaging research shows that food cues trigger greater brain reward responses in a fasted relative to a fed state.

Min tolkning: Tidigare studier anser att fruktos, jämfört med glukos, har sämre förmåga att dämpa aptit och neuroradiologisk forskning att mat ger starkare signaler hos en hungrig jämfört med en mätt person.

Glukos och fruktos är de två vanligaste monosackariderna i mat och dryck. Till dessa kommer även galaktos som enbart finns i mejeriprodukter.

Glukos fruktos sackaros

  • Glukos är en molekyl som kan anta många skepnader och ingå i många vitt skilda födoämnen som del i vitt socker, stärkelse och fibrer. Fibrer är speciella så tillvida att vi inte har egen förmåga att spjälka dem till glukos.
  • Fruktos har samma summaformel men en avvikande uppbyggnad vilken ger det annorlunda egenskaper. När den uppträder i en femkantig ringform är den mycket söt, en egenskap som gradvis minskar vid hög temperatur. Prova gärna att sätta vanligt bitsocker till hett kaffe eller te och smaka av. Vänta sedan till dess det svalnat och känn att sötman ökar.
  • Vitt strösocker, disackariden sukros, består av en glukos- och en fruktosmolekyl. Glukos har en fadd sötma medan fruktosen är påtagligt söt. Det finns även glukos-fruktosblandningar som HFCS (High Fructose Corn Syrup, vanligen 55% fruktos och 45% glukos**) samt honung som smakar betydligt sötare beroende på att andelen fruktos är högre.

– Fruktos är problematiskt eftersom det används i så stor utsträckning i vår livsmedelsindustri då det är mycket sötare i smaken än glukos. Men fruktosen frisätter inte insulin på samma sätt när vi äter det, och det kommer ingen signal att sluta äta, säger Christian Benedict, docent och forskare kring aptitreglering, till SVT.

Ingestion of fructose relative to glucose resulted in smaller increases in plasma insulin levels and greater brain reactivity to food cues in the visual cortex (in whole-brain analysis) and left orbital frontal cortex (in region-of-interest analysis).

Min tolkning: Fruktos gav en mindre insulinfrisättning jämfört med glukos men en större hjärnpåverkan vid stimulans med ”food cues” (gissningsvis bilder eller liknande)

Bukspottkörteln avger insulin bland annat som svar på förhöjt blodsocker (glukos) men inte fruktos, detta beroende på att betacellerna (som producerar och avger insulin) tar in små mängder glukos för att driva processen via glukostransportören GLUT1 som inte kan hantera fruktos. Fruktosen hamnar därför i levern som tar upp, omvandlar till glukos och lagrar som leverglykogen, alternativt omvandlar till fettsyror och lagrar som fett. När leverglykogenet ökar kommer en del att ”läcka ut” och ge ett litet och senkommet bidrag till blodsockret.

Participants also performed a decision task in which they chose between immediate food rewards and delayed monetary bonuses. …..  fructose versus glucose led to greater hunger and desire for food and a greater willingness to give up long-term monetary rewards to obtain immediate high-calorie foods.

Min tolkning: Deltagarna fick välja mellan att genast få belöning i form av mat, alternativt senare som pengar. Fruktos gav större hunger, önskan att äta och större villighet att ge upp pengabelöningen för att istället få ”high-calorie foods.”***

Men Christian Benedict vill inte rekommendera någon att sluta äta frukt, eftersom det har många goda effekter på hälsan och är en bra ersättning för godis. Eftersom frukt också innehåller mycket vatten måste man äta väldigt stora mängder för att det ska vara skadligt. Ett halvt kilo frukt motsvarar fruktosen i fem godisbitar. Faran ligger istället i det tillsatta sockret.

I artikeln från svt.se nämns faran med fruktos för levern i klara ordalag:

Förutom att fruktos kan leda till övervikt med tillhörande problematik, kan för stora mängder också vara farligt för levern. Eftersom fruktosen måste gå genom levern för att tas upp av kroppen kan man utveckla fettlever om man får i sig för mycket.

Han nämner inte juicer, vilket är synd, närmast tjänstefel. Juicer är söta i paritet med de flesta socker- eller HFCS-sötade läskedrycker. De har däremot inte kvar de fiberhöljen som omsluter sukros- och fruktosmolekylerna från de hela frukterna och gör att sockerupptaget blir långsammare. Det är dessutom oerhört lätt att dricka på sig avsevärda mängder socker på kort tid.

Läs även på Netdoktor Pro


*Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards

**) En vanlig kommentar är att ”den lilla skillnaden har knappt någon betydelse”. Åja, fruktosandelen är 22% högre i HFCS.

***) Min gissning är att det gällde ”skräpmat”

Cone Snail

Källa: Compound Chem

Cunning snails drug fish with insulin then eat them 

It’s a murder plot played out both in fiction and real life. But now the first known case of murder using insulin has been seen in the natural world, and in a humble mollusc no less.

Min tolkning: Det är en mordmetod både i litteratur och i verkliga livet, men nu har man upptäckt det första fallet i naturen och förövaren är en mollusk!

Cone Snail Video

Insulin är ett signalhormon med många effekter. Det aktiveras om blodsockret stiger, men även som svar på en proteinrik måltid. Insulin är anabolt (byggande) och dirigerar om i metabolismen, aktiverar lagring av aminosyror/proteiner, glukos som muskel– och/eller leverglykogen samt fettsyror/fetter. Samtidigt deaktiverar det glukagon, ett hormon som stimulerar fettmetabolismen.

I ett välfungerande samarbete innebär detta en harmonisk och välorkestrerad energiförsörjning från såväl mat av mycket varierande sammansättning såväl som kroppens egna lager. Om antingen glukagon eller insulin finns i långt större koncentrationer än de borde går det snett; långvarigt och oreglerat glukagonöverskott kan förorsaka diabetisk ketoacidos och för mycket insulin leder till insulinkoma. Båda är potentiellt dödliga.

…SafaviHemami et al. (2015) identified specialized forms of the peptide hormone insulin in the venom of two fish-hunting cone snails, Conus geographus and Conus tulipa. Analysis of the C. geographus venom gland transcriptome revealed two insulin-like transcripts (Con-Ins G1 and ConIns G2), with the predicted mature Con-Ins G1 peptide resembling vertebrate—specifically fish—insulin.

Conus Snail Schematic picture

Snigeln ger inget aggressivt intryck, bytesfiskarna närmar sig och får en dusch av giftmixen. Det insulinliknande ämnet sänker snabbt blodsockret som upplever akut hypoglykemi (påtagligt lågt blodsocker) och blir apatiska och ett lätt byte för snigelns enorma ”mun”.

Ätbeteenden som leder till påtaglig under- respektive övervikt bör kunna kallas ätstörningar och utredas i tid innan det ger permanenta problem.

Den diabetiker typ 1 som tar mer insulin än optimalt känner hunger och överäter ofta i förhållande till sitt faktiska näringsbehov. Samma sak sker hos diabetiker typ 2 där den normala reaktionen på insulin är nedsatt. Sjukdomsförloppet för diabetiker typ 2 innan diagnosen är ”mjukt”, under flera år märker man inte mycket förutom att man ofta känner sig sugen på mer mat. Då det beskrivs som högst normalt att äta mellan måltider, kallat mellanmål, så går denna ätstörning oftast omärkligt förbi. Vanligt är att det är först i samband med ett läkarbesök av någon annan anledning som man blir varse att man kvalificerat sig som diabetiker typ 2.

I andra ändan av skalan misstänks ungdomar med diabetes typ 1, främst flickor, försöka gå ner i vikt genom att minska eller utesluta insulin. I förlängningen anses det öka risken för anorektiska ätstörningar.

Mange unge med diabetes har spiseproblemer 

Noen unge diabetikere reduserer insulindosen. Det kan gjøre at de går ned i vekt, og det øker samtidig risikoen for alvorlige skader på vitale organer.  En artikkel fra Norges forskningsråd 28 prosent av norske jenter mellom 11 og 19 år med type 1-diabetes har spiseproblemer, ifølge doktorgraden som Line Wisting disputerer for i juni.

Källa: Forskning.no

Jag fick ett mail från en läkare med följande kommentar till artikeln:

Det vore ärligare att säga att det höga blodsockret skadar ger senkomplikationer, inte att det primärt är insulinbristen, även om de hör ihop.   Man talar om mat, men bara som ett uttryck för ätstörning UNS, shit, just det, vad en ätstörning beror på? men matens beståndsdelar orkar man inte ens nämna. Ska vi kanske informera typ2-orna om mekanismen insulin-blodsocker-matens beståndsdelar-fysisk aktivitet  Det här gäller naturligtvis för typ2-or också … varför är det inte lika viktigt att lära 2-orna dessa ”enkla” samband?

28 prosent av norske jenter mellom 11 og 19 år med type 1-diabetes har spiseproblemer, ifølge doktorgraden som Line Wisting disputerer for i juni.

Line Wisting

– Vi vet ikke om jentene og guttene reduserer insulindosen for å gå ned i vekt, men vi vet at 32 prosent av 770 i vår undersøkelse har redusert dosene. Insulin regulerer blodsukkeret, og hvis du har type 1-diabetes og ikke tar tilstrekkelig doser, øker sjansen for alvorlige senkomplikasjoner på nyrer, øyne og hjerte- og karsystemet, sier Wisting.

Hon resonerar en del om detta skall kallas ätstörning eller ej, läs hela artikeln. Sedan kommer en mening som innehåller en nyckel till lösningen.

Hun peker også på at mange går ned i vekt før sykdommen blir oppdaget og opp i vekt når de begynner å ta insulin.

 

Insulin är nödvändigt för regleringen av hormonet glukagon som i sin tur reglerar kroppens fettmetabolism. Med för lite insulin ökar fettmetabolismen förbi det lämpliga och man kan till slut tära på kroppens förråd och gå ner i vikt. Precis det upptäcker de ungdomar som tar låga doser eller inget insulin, de går ner i vikt vilket av vissa betraktas som önskvärt.

Man kan grovt dela upp insulinbehovet i två delar: dels det som krävs för att reglera alfacellernas produktion av glukagon och dels det som krävs för att hantera det blodsocker som kommer från kolhydrater i maten. Äter man mycket kolhydrater krävs högre dos insulin för att dämpa blodsockret för att inte öka risken för de komplikationer som ingår i diabetesens ”naturalförlopp”. Har man inget omedelbart behov av energin från blodsockret måste den lagras och det kan bland annat ske som fettväv. Sker det lite för ofta och utan att utnyttjas kommer viktökningen som oönskad konsekvens.

Den här mekanismen gäller för både diabetiker typ 1 och typ 2, de förra injicerar sitt insulin, de senare producerar det själva som svar på en kolhydratrik mat. Både under- och överanvändning av insulin ger effekter som, enligt mig, kan leda till eller kallas ätstörningar. I det förra fallet blir följden onormal viktnedgång och i det senare övervikt och fetma.

En logisk åtgärd är att äta enligt LCHF, mat som hos diabetiker typ 1 inte kräver mycket mer insulin än det som fodras för att hålla lagom glukagonnivå och för diabetiker typ 2 inte överstimulerar insulinproduktionen.


L. Wisting mfl: Disturbed Eating Behavior and Omission of Insulin in Adolescents Receiving Intensified Insulin Treatment. A nationwide population-based study. Diabetes Care, 20. august 2013.

L. Wisting mfl: Psychometric Properties, Norms, and Factor Structure of the Diabetes Eating Problem Survey–Revised in a Large Sample of Children and Adolescents With Type 1 DiabetesDiabetes Care, 27. mars 2013.

 

 

Förhöjt blodsocker har både en kemiskt och en mekaniskt förstörande effekt på de vävnader som det kan komma i kontakt med, inklusive blodkärl. I detta inlägg skall jag berätta om den senare typen av skador.

Det är en missuppfattning att insulin alltid krävs för att blodsocker (glukos) skall kunna komma in i celler. Det finns fyra varianter av GLUT (Glukostransportörer) av stor betydelse. De öppnar små kanaler från cellytan, genom cellmembranets dubbla fosfolipidlager och in i cellens inre. En av dem, GLUT4, aktiveras av insulin och finns enbart i levernskelettmuskler och fettcellerGLUT4 bild

Schematisk funktion för insulin och GLUT4

GLUT släpper igenom glukos och är passiva kanaler, transporten sker alltid från högre till lägre koncentration. Det innebär att när glukoskoncentrationen i blodet är högre än i cellens inre så kan glukosen passera, det är alltså inte frågan om någon slags ”pump”.

GLUT tabell

Skelettmuskler och fettväv har insulinreglerade GLUT för att snabbt kunna släppa in blodsockret för att det inte skall förorsaka skador jag beskriver senare. Alla celltyper har ytterligare någon insulinoberoende GLUT där regleringen sker på annat och långsammare sätt.  Antalet av dessa GLUT som exponeras vid cellytan ökar gradvis vid lågt blodsocker och minskar när blodsockret stiger. Denna reglering är inte lika snabb som den insulinstyrda och när blodsockret snabbt stiger hinner mer glukos än behövligt tränga in i dessa vävnader. När sedan blodsockret sjunker kan det interna trycket i de överladdade cellerna inte sjunka, mekanismen beskrivs i följande citat:

Microvascular disease occurs in tissues where glucose transport into the cell does not depend on insulin. When the extracellular glucose level is high, cellular glucose concentration rises and glucose is converted to sorbitol and fructose by the polyol pathway. Sorbitol and fructose cannot leave the cell easily, and as their cellular concentration increases, they promote osmotic accumulation of water with subsequent swelling and cellular dysfunction, especially in the lens of the eye.

Min tolkning: Skador i små blodkärl inträffar där transporten in i cellerna inte är insulinberoende. När glukoskoncentrationen utanför celler är hög ökar den även inne i cellerna och omvandlas till sorbitol och fruktos. Dessa kan inte lämna cellen och när deras koncentration ökar kommer de via osmos att dra in vatten med åtföljande svullnad och försämrad cellfunktion, speciellt i ögats lins.

Kompletterande förklaring: Eftersom transportkanalerna inte aktivt ”pumpar” in glukos så kan de inte skapa ett övertryck inne cellerna. Men likafullt kommer ett högt blodsocker att orsaka ansvällning och cellskador. När glukosen passerat in i cellen kommer en del att bearbetas av enzymet aldose reductase vilket omvandlar dessa glukosmolekyler till dels fruktos och dels sorbitol. Denna ändring har en avgörande betydelse, då ingen GLUT släpper ut dem igen.

Källa: Krause´s Food, Nutrition & Diet Therapy 8th edition, L. Kathleen Mahan, Marian Arlin

Människans blodomlopp är cirka cirka 5-6 liter. Om man lägger samman alla blodkärlen till ett långt rör så summerar det ihop till ofattbara 100 000 kilometer, 2.5 varv runt jorden! (Wikipedia) Om vi utesluter de blodkärl som är vidare än ett människohår så måste det alltså finnas enorma mängder av extremt fina kärl där blodkropparna i princip måste stå i kö för att passera.

Varje liten ansvällning av blodkärlsväggarna kommer att minska blodcirkulationen, förorsaka syrebrist och lämna kvar överskott av koldioxid i vävnaderna. Om detta pågår under en tillräckligt lång tid kommer detta att leda till celldöd och ärrvävnad som i sin tur minskar blodflödet. Observera att allt som stryper det fria blodflödet kräver en ökning av blodtrycket för att bibehålla den nödvändiga cirkulationen.

Både fruktos och sorbitol är hygroskopiska, vattensugande, och när de sitter fångade inne i cellen drar de till sig vatten och ökar cellens volym. Varje fri glukosmolekyl binder 190 vattenmolekyler, detta gäller även för fruktos. Sorbitol har något högre molekylvikt och binder därför mer vatten. Om det sker mer än i begränsad omfattning så blir det skador. Kroppens förmåga att hantera sorbitol är överhuvudtaget mycket låg vilket gör att det skadar under lång tid eftersom det knappt förbrukas.

Levern kan hantera fruktos i god omfattning. Det omvandlas till glukos för lagring som leverglykogen samt fett som i viss utsträckning exporteras i blodet men även lagras i levern och kan förorsaka fettlever liknande den som drabbar alkoholister.

Sorbitol har en söt smak och används därför som sötningsmedel. På åtminstone en del förpackningar finns varningar om att undvika för stor konsumtion då det kan ge diarré. Sorbitol används som laxermedel då det dels inte tas upp i tarmen och dels drar till sig stora mängder vatten vilket gör tarminnehållet lösare. Detta är ytterligare ett starkt stöd för tanken att sorbitol inne i celler kan orsaka ett inre tryck så att cellerna ökar i volym och leder till ansvällningar.

Hos framförallt diabetiker hittar man skador som sannolikt har sitt ursprung i dessa mekanismer. Ögon-, fot– och nervskador är senkomplikationer som uppträder i diabetesens naturalförlopp*.

I kroppens allra finaste blodkärl räcker det med att kärlets innersta cell-lager sväller lite för att skapa allvarliga hinder för cirkulationen. När detta sker i ögat så får det mycket ”synliga” konsekvenser, dels för den drabbade men även för ögonläkare då blodkärlen är mycket enkla att observera i ögat. När ett område i ögat skadas av cirkulations- och syrebrist så försöker kroppen att kompensera genom att skapa nya vägar för blodet att passera. Tyvärr har dessa långt ifrån samma hållbarhet och då uppkommer lätt blödningar och på sikt omfattande permanenta synskador.

Fotskadorna beror dels på att cirkulationen så långt från hjärtat är sämre redan från början samt att fötter tillhör de mest belastade delarna av kroppen. Inte blir saken bättre av att konventionellt behandlade typ 2-or till 80% även är överviktiga eller feta.

The dangers of excess sorbitol accumulation seem clear. The American Diabetes Association reports that diabetes is the number one cause of blindness in the U.S., accounting for 5,000 new cases yearly, and that diabetes is the direct cause of some 20,000 amputations each year because of circulatory problems and infections.

Min tolkning: Farorna av anhopning av sorbitol förefaller klara. ADA rapporterar att diabetes är den främsta orsaken till blindhet i USA och förorsakar 5 000 nya fall årligen samt att diabetes är den direkta orsaken till cirka 20 000 amputationer varje år beroende på cirkulationsproblem och (åtföljande) infektioner.

Källa: Nutrition Health Review

När blodförsörjningen till nervbanorna fallerar får det långtgående konsekvenser. En av diabetesens välkända senkomplikationer är gastropares, en skada i vagusnerven som gör att nedre magmunnen inte öppnar som den ska. Tömningen från magsäcken och vidare till tunntarmen blir slumpartad vilket speciellt drabbar insulinberoende diabetiker som inte längre kan anpassa insulinet till maten.

No nerve in the body is exempt, and the results are often tragic. The damage initially shows up as a tingling sensation in the extremities which can progress to numbness. Diabetics can severly injure themselves and feel nothing.

Min tolkning: Inga nerver i kroppen är undantagna (från skador) och resultaten är ofta tragiska. Skadan visar sig till en början som en pirrande känsla i extremiteterna och man kan tappa känseln. Diabetiker (med dessa skador) kan skada sig allvarligt utan att känna något.

Källa: Nutrition Health Review)

Man kan motverka högt blodtryck bland annat genom att använda preparat som slappnar av blodkärlen så att de vidgas. Förr eller senare kommer inte konventionell blodtrycksbehandling att räcka till och blodtrycket börjar stiga.

Salt i maten brukar skyllas som blodtryckshöjande. Då saltkoncentrationen i vävnader inte nämnvärt får avvika från 0,9% måste man dricka vatten vilket momentant ökar blodvolymen. Detta motverkas dock snabbt då saltöverskottet snabbt utsöndras i urinen. Motsvarande snabbverkande funktion saknas för förhöjt blodsocker, först när det passerar den s.k. njurtröskeln som ligger över 10 mmol/L (ungefär dubbla normalnivån för en frisk eller välreglerad diabetiker) spiller glukos över i urinen. Sådana blodsockerkoncentrationer skadar njurens filtreringsfunktion.

Ett annat, mer långsiktigt och logiskt sätt att dämpa skador och sänka blodtrycket, är att minska eller undvika mat med blodsockerhöjande kolhydrater. Om denna strategi inte räcker till kan man komplettera med mediciner.

Vårdens normalförslag att medicinera för att kunna fortsätta att äta mat som ger de beskrivna skadorna är ogenomtänkt och cyniskt.


*) Ordet naturalförlopp har myntats som en beskrivning av komplikationer som med tiden brukar drabba diabetiker som följer traditionell behandling, gissningsvis för att ursäkta den misslyckade behandlingen.

Short-term fasting dramatically lowered overnight fasting and 24 h integrated glucose concentrations. Carbohydrate restriction per se could account for 71% of the reduction.

Min tolkning: Kort tids fasta sänkte dramatiskt fasteglukos och integrerade glukoskoncentrationer, mätta som area under blodsockerkurvan.*

Källa: NCBI/Metabolism

Förhöjt blodsocker, hyperglykemi, förbättras när patienter med diabetes typ 2 sätts på viktminskningsdieter och effekten följer snart efter kostförändringen. Enligt studiens abstract kan det bero på lägre energitillförsel (kaloribegränsning), lägre kolhydratinnehåll i viktminskningsdieten och/eller viktminskningen i sig.

1) Sju försökspersoner med obehandlad diabetes typ 2 studerades i en crossoverdesign**.

2) Deltagarnas utgångsvärden mättes från en standardkostkost med 55E% från kolhydrater, 15E% protein och 30E% fett. Därefter fick de, i slumpad ordning, delta i två 3 dagars försöksperioder med en mellanliggande ”washout-period”*** om 4 veckor.

3) Den ena tredagarsperioden innebar strikt fasta, under de sista 24 timmarna mättes bland annat blodsockret.

4) Under den andra tredagarsperioden åt man en ”tillräckligt” energirik kost som var kolhydratfri.

Standardkosten resulterade i fasteblodsocker på 10,9 mmol/L, den kolhydratfria gav 8,9 mmol/L och strikt fasta 7,1 mmol/L.

Arean under blodsockerkurvorna**** minskade 35% under det kolhydratfria dygnet och 49% vid strikt fasta.

Blodsockerkurva, schematisk

Bilden: Exempel på blodsockerkurvor (ej från studien). Ju närmare ”Frisk” den hamnar dess bättre

En motsvarande jämförelse gjordes även för insulin och där minskade arean 48% respektive 69%. Nattvärden för såväl insulin som glukagon förblev oförändrade.

Short-term fasting dramatically lowered overnight fasting and 24 h integrated glucose concentrations. Carbohydrate restriction per se could account for 71% of the reduction. Insulin could not entirely explain the glucose responses. In the absence of carbohydrate, the net insulin response was 28% of the standard diet. Glucagon did not contribute to the metabolic adaptations observed.

Min tolkning: Kort tids fasta sänkte fasteblodsocker och minskade arean under blodsockerkurvan dramatiskt. Kolhydratrestriktion kunde förklara 71% av sänkningen. Insulin kunde inte helt förklara blodsockersvaren. I frånvaro av kolhydrater var insulinsvaret 28% av det vid standardkosten. Glukagon bidrog inte till de metabola förändringar som observerades.

Mina reflektioner:

1) Oavsett vad vi för stunden stoppar in i munnen så kommer våra kroppar att försöka få fatt i det den för ögonblicket behöver och spara eventuella överskott för senare användning. Överskotten kan räcka till nästa måltid eller betydligt längre än så. Övervikt och fetma kommer från upprepade sådana ackumulerade överskott med alltför få/små underskott. Viktnedgång beror på ackumulerade underskott som resulterar i ”uttag” ur förråden.

2) Om vi inte äter något alls, som vid strikt fasta, kommer allt vår metabolism kräver att tas från våra kroppar.

3) Vi bär med oss glykogen (mångförgrenade kedjor av monosackariden glukos) om cirka 500 gram/2000 kcal. 400 – 450 gram finns i våra muskler och kan uteslutande användas i precis de muskelceller där de lagras. 50 – 100 gram lagras i levern och kan exporteras via blodet dit där det bäst behövs om så det är en särskilt belastad muskel, våra röda blodkroppar eller de primitivare delarna av hjärnan.

4) Den som äter ungefär som standardkosten ovan där kolhydrater dominerar energitillskottet kommer självklart att ha sin ämnesomsättning väl anpassad till kolhydrater och under de två första dygnen av den strikta fastan tar större delen av glykogenförrådet slut.

5) När det inträffar har kroppen redan börja justera ämnesomsättningen så att nödvändig energi tas där den finns att få, kroppens lager av fett och protein.

6) Förbättrade blodsocker- och lägre insulinnivåerna beror på att man inte äter några kolhydrater, mer uttalat vid fasta som snabbare tömmer glykogenförråden.

7) Det kommer kanske inte som en överraskning att strikt fasta i mycket liknar strikt LCHF, där en stor del av energin kommer från fett.


Abstract: Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes – Nuttall FQ, Almokayyad RM, Gannon MC

*) Jag tolkar ”integrated glucose concentrations” som ett mått på arean under glukoskurvan, i detta fall under 24 timmar.

**) Crossover innebär att varje deltagare dels är sin egen kontrollperson samt deltar i alla varianter av försöken. Fördelen är att inga osäkerheter i randomisering slipper igenom och man når därför statistiskt högre säkerhet med färre deltagare. Nackdelen är att tidsåtgången blir större p.g.a den nödvändiga washout-tiden.

***) En washout-period används för att eventuella effekter av ett försök inte skall påverka ett senare försök.

****) Arean under blodsockerkurvan kan ses som ett mått på hur stor skada (glykering, ”försockring”) som blodsockret kan hinna göra på dels blodproteinet HbA1c och för den del även alla proteiner som kommer i kontakt med blod.

Jag har enbart läst abstract och kan därför ha missat väsentliga uppgifter.