Arkiv för kategori ‘beta-hydroxybutyrat’

During prolonged starvation, brain energy requirements are covered in part by the metabolism of ketone bodies. It is unknown whether short-term starvation of a few days’ duration may lead to reduced brain glucose metabolism due to the change toward ketone body consumption.

Min tolkning: Vid utdragen svält täcks delar av hjärnans energibehov av ketoner. Det är inte känt om en kortvarig svält under några dagar leder till minskad glukosmetabolism beroende på ökad ketonanvändning.

Källa: Brain Metabolism During Short-Term Starvation in Humans (Fri fulltext, 1994), Abstract

Min åsikt: I studien används ordet starvation/svält på ett sätt som ger sneda associationer. Tre dagar utan mat kan givetvis uppfattas som obehagligt, men svält i ordets bemärkelse är det inte. Jag kommer att använda ordet, men under protest.

Det är väl känt och dokumenterat att människor kan leva helt utan mat (men med vatten!) i ett par månader, till och med förbi 70 dagar. Läs om matvägrande IRA-fångar i Mazefängelset på Nordirland, andra strejken 1981. Om man utgår från konventionella åsikter att hjärnan kräver 500 kcal i form av glukos (dryga 120 gram) skulle enbart den kräva (120 gram * 60 dagar) 7,2 kilo glukos. Proteiner (aminosyror) och kolhydrater (i detta fall glukos) ger ungefär samma mängd energi per viktenhet. En stor skillnad mellan de två energikällorna är att de lager av proteiner vi har i kroppen (ex. muskler) alltid innehåller avsevärda mängder vatten. I praktiken innebär det att det skulle krävas 22 – 24 kg muskelvävnad för att försörja enbart hjärnan. Fångarna magrade visserligen av rejält, men långt ifrån så mycket.

Under normal physiological conditions, glucose is the only significant energy source of the human brain (Kety, 1957).

Min tolkning: Under normala fysiologiska förhållanden är glukos den enda påtagliga energikällan för den mänskliga hjärnan.

Här gör man sig skyldig till en tendentiös tolkning av vad ”normal physiological conditions” innebär. I en miljö där kolhydratrik föda dominerar så är det logiskt att hjärnan (som ständigt kräver energi oavsett om man tänker eller ej) tar sitt ansvar för att hålla nere blodsockret inom hälsosamma gränser.

Owen et al. (1967) showed that in obese subjects ketone bodies accounted for 60% of the energy supply to the brain after 5-6 weeks of starvation, thus replacing glucose as the predominant source of energy.

Min tolkning: Owen och medarbetare visade att hos obesa (feta) bidrog ketoner med 60% av hjärnans behov efter 5-6 veckors svält och ersatte därmed glukos som den dominerande energikällan.

Detta är ett ypperligt exempel på metabol flexibilitet som tillåter oss att använda olika energiråvaror* efter tillgång. Vad händer på den fronten i detta betydligt kortare experiment? En liten försmak finns i Tabell 1.

cbf-arterial-pco2-and-ph-before-and-during-starvation

CBF betyder Cerebral Blood Flow, alltså ett mått på blodflödet i hjärnan och är lika oavsett svält eller ej.

En statistiskt säkerställd skillnad finns mellan CO2 (koldioxid) vid normalkost respektive svält och pH sjunker något.

Ändringen av CO2 och pH är en logisk följd av att hjärnans energiförsörjning gradvis tas över av ketoner.

  • Glukos transporterar in mer bundet syre (kvoten O/C är 1 för glukos) i hjärnan än ketoner där O/C är 0,75 vilket innebär att mindre mängd koldioxid måste elimineras ur hjärnan hos ketondrivna.**
  • Att pH sjunker något är en följd av att ketonen beta-hydroxybutyrat är en lätt modifierad variant av fettsyran n-butansyra vilket ger den egenskapen att kunna passera blod-hjärnbarriären.

With use of two independent methods, the present study showed that the glucose consumption of the human brain was reduced to -75% of control values after 3.5 days of starvation.

Min tolkning: Genom att använda två oberoende metoder visar denna studie att hjärnans glukosanvändning minskar till cirka 75% av utgångsvärdet efter 3,5 dygns svält.

Tabell 2 visar ett antal intressanta parametrar:

table-2-arterial-concentrations-and-arteriovenous-differences-of-substrates-before-and-during-starvation

De två nedersta raderna är särskilt betydelsefulla då de visar hjärnans användning av energiråvaror vid normalläge respektive svält. Relativt normalläget sjunker glukosanvändningen med 24%, beta-hydroxybutyrat ökar 13 gånger, acetoacetat (en annan keton) ökar drygt 6 gånger och fria fettsyror (FFA) med 9 gånger!

The reduction in glucose metabolism is approximately half of that observed after prolonged starvation (Owen et aI., 1967; Redies et aI., 1989), indicating that the shift toward ketone body consumption of the same magnitude as that observed during prolonged starvation may occur gradually.

Min tolkning: Minskningen av glukosmetabolismen (i denna studie) är ungefär hälften av vad som observerats av Owen och Redies. Detta antyder att anpassningen till ketonanvändning sker gradvis.

Vi anpassar oss gradvis till de förhållanden vi lever i. Även om vi har potential att klara väsentligt olika miljöer och livsstilar så är det oekonomiskt för kroppen att ständigt vara 100% beredd på allt.

  • Den som sällan eller aldrig tränar vet att det är oklokt att ställa upp i Vasaloppet.
  • Om jag är van vid svensk hygienstandard vad gäller mat innebär det inte att jag eller andra medresenärer klarar Marockansk mat utan vidare (nyligen självupplevt).
  • Om vi ständigt matar kroppen med kolhydratrik mat så är vi inte omgående beredda att klara det man i studien kallar svält utan vidare.

The reduction in glucose metabolism would lead to a reduction in ATP production of 2.7 mmol g-1 min-1, if each mol of glucose were to yield 38 mol ATP and the egress of lactate and pyruvate were corrected for. The combined influx of beta-hydroxybutyrate and AcAc during starvation of 0.20 mmol g-1 min-1 would yield 5 mmol ATP g-1 min-1, if it is assumed that 1 mol beta-hydroxybutyrate generates 26 mol ATP and 1 mol AcAc generates 23 mol ATP. Because the ATP gain from ketone bodies was greater than the decrease in ATP production from glucose during starvation, the total ATP production seemed increased. Thus, the cerebral ATP state might even be improved during ketone body consumption, as has been reported in an experimental study (De Vivo et aI., 1978).

Min tolkning: Man jämför produktionen av ATP (kroppens primära ”energivaluta”) från olika ketoner med den från glukos och finner att den ökar vid ketondrift!

Att koldioxidproduktionen i hjärnan minskar samtidigt som ATP-produktionen ökar vid ketondrift kan förklara varför de som fastar förbi de inledande obehagen ofta upplever en euforisk känsla.

Läs även Vilken är vår viktigaste energikälla? och Om ketoner, för den misstänksamme


*) Fetter, proteiner och kolhydrater anses ge oss den energi vi behöver, men det är först sedan de processats i många steg till ytterst små energienheter som ATP, NAD+, NADH samt elektriska potentialskillnader över cellmembran som kroppen kan utnyttja. Denna raffinering av energigivande råvaror sker i huvudsak i cellernas inre samt i mitokondrierna.

**) Summaformeln för glukos är C6H12O6. All energi som kan utvinnas i kroppen finns lagrad i kemiska bindningar där kol (C) är ena parten och utvinningen sker genom oxidation med syre (O). Redan i grundläget är varje kol i glukosen associerat med en syre (O), kvoten O/C = 1. Summaformeln för den dominerande ketonen, beta-hydroxybutyrat, är C4H8O3 vilket ger O/C = 3/4 = 0,75.

Lagom till LCHF-träffen i Säffle har LCHF-magasinet släppt senaste numret, #2/2016

image

Mitt bidrag om ketoacidos och LCHF presenterades på omslaget.

Ketogen kost innebär att man utnyttjar sin metabola flexibilitet och använder fett som huvudsaklig energiråvara. Dessa kan komma från mat och/eller egna lager, fettväv och andra platser där fett lagrats. Ketoner har fått en negativ klang, främst från de som inte inser deras naturliga roll i människors evolution. Läs Om ketoner för den misstänksamme, gärna även dessa inlägg på MatFrisk under kategorin ketoner.

Beta-hydroxybutyrat_2

Bilden: Beta-hydroxybutyrat, BHB (Wikipedia)

Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. Langfort J1, Pilis W, Zarzeczny R, Nazar K, Kaciuba-Uściłko H.

Abstract
Maximal oxygen uptake (VO2 max) and lactate threshold (LT) were measured during graded, incremental exercise in 8 healthy, untrained volunteers (aged 22 +/- 0.9 yrs) following 3 days on a control, mixed diet, or a ketogenic (50% fat, 45% protein and 5% carbohydrates) diet of equal energy content.

Min tolkning: Maximal syreupptagning och mjölksyrabildning studerades vid varierande nivåer av fysisk aktivitet efter en mixad kontrollkost samt en ketogen kost (50% fett, 45% protein och 5% kolhydrater) med lika energiinnehåll.

Before and after exercise tests acid base balance, plasma beta-hydroxybutyrate (beta-HB), free fatty acid (FFA), and some hormone concentrations were determined.

Min tolkning: Före och efter den fysiska aktiviteten mättes pH, beta-hydroxybutyrat (BHB*, en s.k. keton), fria fettsyror  och hormoner.

In comparison with the normal diet, the ketogenic diet resulted in: an increased VO2 max, decreased respiratory exchange ratio an a shift of LT towards higher exercise loads. Blood LA concentrations were lower before, during and after exercise. Post exercise blood pH, as well as pre-and post exercise base excess and bicarbonates were reduced.

Min tolkning: Den ketogena kosten ökade maximal syreupptag, minskade RQ** och mjölksyratröskeln flyttades till högre belastning. Blodets nivå av mjölksyra var lägre före, under och efter den fysiska aktiviteten.

Resting beta-HB concentration was elevated to approx. 2.0 mM, and FFA to approx. 1.0 mM. During a 1 h recovery period beta-HB decreased to 0.85 mM (p < 0.01) after the ketogenic diet, while plasma FFA did not change after exercise under either conditions.

Min tolkning: BHB i vila höjdes till 2.0 mM (millimol) och de fria fettsyrorna till 1.0 mM. Under efterföljande vila sjönk BHB till 0.85 mN efter den ketogena kosten medan de fria fettsyrorna inte påverkades av kosten.

Both the pre-and post-exercise levels of adrenaline, noradrenaline, and cortisol were enhanced, whilst plasma insulin concentration was decreased on the ketogenic diet.

Min tolkning: Den ketogena kosten ökade nivåerna av adrenalin, noradrernalon och kortisol både före och efter den fysiska aktiviteten medan insulinnivån sjönk.

It is concluded that the short-term ketogenic diet does not impair aerobic exercise capacity, as indicated by elevated VO2 max and LT. This may be due to increased utilization of beta-HB and FFA when carbohydrate stores are diminished. Stimulation of the sympatho-adrenal system, and cortisol secretion with reduced plasma insulin concentration seem to be of importance for preservation of working capacity.

Min tolkning: En kortvarig ketogen kost försämrar inte motionsförmågan. Detta kan bero på ökad användning av (”ketonen”) BHB och fria fettsyror när kolhydratförråden (glykogen) minskat.

PMID: 8807563 [PubMed – indexed for MEDLINE]

Den negativt klingande slutsatsen kommer antagligen av studiens målsättning som förmodligen utgick från att träningsförmågan skulle försämras på ketogen kost. Tyvärr har jag inte tillgång till studien i sin helhet. Där kan finnas pärlor att hämta, särskilt som utfallet verkar ha överraskat författarna.

Som test av ketogen kost är den halvhjärtad för att inte säga mesig. 45E% protein är långt över även det en kraftig fysisk aktivitet kräver, förmodligen borde det räcka med 20-25E%. En konsekvens av detta är att överskottet av proteinernas aminosyror till största delen omvandlas till glukos, något till ketoner. I praktiken betyder det att det resulterande energitillskottet från glukos inte är 5E% utan snarare 20E%. Detta motverkar ketosen.

Som jag ser det är det ett test av det jag vill kalla metabol flexibilitet. Se länk i inledningen.


*) BHB klassan vanligen som keton, men enligt kemisk logik är det en kort fettsyra (smörsyra) med en tillkopplad OH-grupp. Detta gör den vattenlöslig och kan transporteras i blodet, även in genom blod-hjärn-barriären.

**) RQ, respiratorisk kvot, är avgiven koldioxid per inandats syre. Koldioxid  kan betraktas som en avfallsprodukt efter all metabolism (”förbränning”). Se även Respiratorisk kvot, intressant eller som att se färg torka? för mer information.

I konventionella källor påstår man med till visshet gränsande sannolikhet att det är kolhydrater. Om du äter tre mål och mellanmål enligt Livsmedelsverket, dessutom fikar och äter lite godis som är rätt vanligt så kommer majoriteten av energin från kolhydrater. Så långt går det att hålla med dietister och SLV.

Konventionell beskrivning av energikällor

Min åsikt är att det vi för ögonblicket använder mest av är den viktigaste energikällan. Vi måste, utöver det vi äter, också inkludera det vi metaboliserar av redan lagrade ämnen.

Kolhydrater kan rimligen inte vara vår viktigaste energikälla då de förråd vi kan spara för framtiden i form av muskel– och leverglykogen är starkt begränsat, ungefär 2000 kcal. Det innebär på sin höjd ett dygnsbehov hos en person med låg fysisk aktivitet.

  • Cirka 300-400 gram av glykogenet (1200 – 1600 kcal) är bundet i muskelceller och kan bara användas exakt där de är lagrade. Om du springer eller cyklar benmusklerna tomma på glykogen så hjälper det inte att kroppens övriga muskelglykogen fortfarande har en hyfsad nivå.
  • Levern innehåller 100 – 120 gram (400 – 480 kcal). Där finns ett enzym som kan återställa D-glukos ur glykogen, dessutom glukostransportören GLUT2 som är dubbelriktad och kan exportera D-glukos ut i blodet. Leverglykogenet kan alltså gå dit det för ögonblicket bäst behövs.
  • Varje gram glykogen binder 2,7 gram vatten, ett fullt glykogenförråd väger då nästan 2 kilo / 2000 kcal. Andra källor menar att varje gram glykogen binder 3-4 gram vatten, alltså upp till 2,5 kilo.
  • Hjärnan är innesluten i ett begränsat utrymme och kan inte rymma ens små mängder lagrat glykogen då det ovillkorligen skulle innebära stora variationer i volym. Ett enda dygns energiförråd för hjärnan i form av glykogen skulle kräva nästan 1/2 liters volym! Då räknar jag med att varje gram glykogen kräver 2,7 gram vatten, om det är 3-4 gram som är korrekt skulle det bli 0,6 – 0,75 liter!

Äter vi kolhydrater i en mängd som inte omgående förbrukas eller får plats i något av glykogenförråden kan det omvandlas till fettsyror i levern. Dessa kan exporteras i blodet tillsammans med bärarproteinet albumin och kallas då fria fettsyror. Tre fettsyror kan även kopplas samman via en glycerolmolekyl (gjord av glukos!) till en fettmolekyl. Den kan exporteras i blodet via lipoproteiner (”kolesterol”) eller lagras på plats. Om det lagras mer i levern än det senare används kommer det med tiden att resultera i hälsoskadliga fettinlagringar i levern, NAFLD, Non Alcoholic Fatty Liver Disease.

När glukos omvandlas till fettsyror avlägsnas ett antal syreatomer vilket gör fett betydligt kompaktare räknat per energienhet, dessutom drar det inte till sig vatten som glukosen i sin ursprungsform. Varje glukosmolekyl i blod och celler kräver ungefär 190 vattenmolekyler för att sockerlösningen inte ska vara hälsofarligt koncentrerad. Om glukos kopplas samman i långa kedjor till glykogen minskar vattenbehovet avsevärt, men varje 1000 kcal glykogen väger likafullt 0,9 – 1,25 kg. 1000 kcal sparat i fettväv väger 135 gram och binder knappt något vatten.

  • Det går alltså utmärkt att bygga fettväv med glukos som råvara, att vända processen ger väldigt lite. Glyceroldelen i en fettmolekyl återvinns i levern till glukos, men mängden är liten, 15-20 gram/dygn hos en fastande person. Enzymer som kan återställa syremolekyler saknas nämligen.
  • I hjärnan kommer, enligt Reichard, acetoacetat att bilda aceton som i sin tur kan ge små mängder glukos, kanske 10 gram/dygn. (Källa: Cahill och Aoki)
  • Båda dessa glukosbidrag kan förefalla små men tillsammans motsvarar de nästan hjärnans obligata (ovillkorliga) glukosbehov.

En stor massa* av kroppens celler fungerar med fördel på fettsyror, hjärtat är ett viktigt exempel. Men det finns viktiga undantag och hjärnan är ett av dem. För att skydda hjärnan omges den nästan helt av ett filter, en barriär som de albuminburna fettsyrorna inte kan passera. Där måste det till vattenlösliga energibärare som glukos, acetoacetat eller beta-hydroxibutyrat. De två senare kallas ketoner men beta-hydroxibutyrat är i grunden en mycket kortkedjig karboxylsyra (Alla fettsyror är karboxylsyror) med en tillkopplad OH-grupp vilket sammantaget ger utmärkt vattenlöslighet och den kan transporteras på samma sätt som glukos i blodet. Ketoner kan utan svårighet passera barriären runt hjärnan och förse den med 70% av dess energibehov, möjligen mera, dessutom med 25% högre verkningsgrad än glukos. Ketoner ger mindre avfall (CO2, koldioxid) än glukos, räknat per energienhet.) Läs mer: Om ketoner, för den misstänksamme samt Något om resistent stärkelse samt kanske en överraskning

  • Vi har alla en liten ketonproduktion, även om den vanligen inte ger nämnvärda energibidrag. Trots ringa mängd är den avgörande för hjärnans funktion. Hjärnan består till övervägande delen av lipider (fetter och fettliknande ämnen) och de passerar normalt inte blod-hjärn-barriären. Lösningen kommer i form av ketoner av vilka lipider kan byggas på plats!

De röda blodkropparna dominerar antalet celler i kroppen (84%). För att bli tillräckligt små och kunna passera de finaste kapillärerna saknar de mitokondrier och kan därför bara utnyttja glukos som energibärare via den passiva glukostransportören GLUT1. De förbrukar små mängder energi och klarar sig gott även vid extremt lågt blodsocker. 1980 publicerade Cahill och Aoki en artikel där man visade att vid tillräcklig nivå av ketoner kunde man sänka blodsockret till 1 mmol utan att försökspersonerna märkte något negativt.

Cahill och Aoki - text

Cahill och Aoki - graf

Källa: Alternate Fuel Utilization by Brain av Cahill och Aoki i Cerebral Metabolism and Neural Function (1980?)

Jag anser att detta visar att glukos är ett av flera energibärande ämnen och dominerar endast om och när kolhydrater utgör en väsentlig del av maten. Så snart maten inte kommer regelbundet, en nattfasta räcker, börjar fettsyror och ketoner att ta över. De ger mycket stor uthållighet då energin i våra fettlager, även hos ordinärt smala och välbyggda personer, överskrider glykogenlagren med 55 gånger (110 000 kcal vs. 2 000 kcal) eller mer. Detta förklarar varför man kan överleva på enbart vatten och egna kroppsvävnader i ett par månader eller mer**.


*) Vi måste skilja på antal celler och deras massa. 84% av antalet celler vi har är röda blodkroppar, 0,2% är fettceller och 0,001% är muskelceller. Förhoppningsvis dominerar muskelceller massan, säkert är att fettcellsmassan aldrig rankar lägre än tvåa. Läs mer i Nature och Hur många celler har vi som reagerar på insulin? 

**) Matvägrande IRA-fångar i Mazefängelset på Nordirland, andra strejken 1981.

Ketoner är ämnen där en syreatom är dubbelbunden till en kolatom mellan två andra grupper, här R och R’imgresDen näringsmässigt mest betydelsefulla ketonen är beta-hydroxybutyrat, faktiskt inte en ”renlärig” keton. Namnet låter skrämmande men det är bara internationellt förståelig ”kemiska”.

  • Beta– berättar var det speciella hos ett ämne är beläget.
  • Hydroxy– beskriver en liten grupp atomer som består av en syre- och en väteatom, en OH-grupp.
  • Butyrat visar att det gäller en kolkedja med fyra kol.

Sätt nu samman denna information på samma sätt som vi bygger upp en ekvation ur dess delar. Vi får då en kort kolkedja som skiljer sig från fettsyran n-butansyra (4 kol, smörsyra, bilden nedan) genom att en väteatom invid den andra kolatomen i kedjan (räknat från metyländen, den ”feta” änden) ersätts med en OH-grupp.

N-butansyra

Detta resulterar i beta-hydroxybutyrat, märk den lilla skillnaden mot förra bilden.

Beta-hydroxybutyrat_2

Kort– och medellånga fettsyror har utomordentligt fördelaktiga hälsoegenskaper, de kan bland mycket annat minska eller eliminera epileptiska anfall och dramatiskt förbättra vissa typer av demens. Framförallt korta fettsyror är lösliga i blodet och kan transporteras dit där de behövs, med ett undantag, hjärnan. Där finns blod-hjärnbarriären för att skydda hjärnan och den sätter stopp för fettsyror.

Men den extra OH-gruppen hos beta-hydroxybutyrat förändrar allt. OH-grupper är speciella såtillvida att det endast saknas en väteatom för att bygga en vattenmolekyl, OH-grupper ”umgås” därför gärna med vatten, ju fler OH desto lättare. Beta-hydroxybutyrat har två sådana hydrofila (vattenälskande) grupper och den lilla förändringen gör att ketonen med största lätthet följer blodet vart som helst i kroppen, även genom blod-hjärnbarriären! En av fördelarna hos beta-hydroxybutyrat är att den är nästan lika energität som motsvarande fettsyra utan att, räknat per energi, dra med sig lika mycket syre som glukos.

Med tanke på dessa goda egenskaper finns ingen anledning att ifrågasätta ketoner/ketos? Med ett undantag!

Våra kroppar behöver energigivande råvaror där hormonerna insulin och glukagon i samarbete fungerar som ”trafikvakter” och förser blodet med energi från såväl mat som redan befintliga lager av energi i kroppens vävnader. Hos personer med kraftigt nedsatt eller obefintlig insulinproduktion fungerar inte denna styrning, glukagonet tar överhanden och aktiverar glukosfrisättning och fettmetabolism inklusive ketonproduktion.

Diabetes typ 1 (kraftigt nedsatt eller obefintlig insulinproduktion) är alltså i grunden en dysfunktion (bristande funktion) i fettmetabolismen till skillnad från diabetes typ 2 (”sockersjuka”, åldersdiabetes) där insulin inte får den önskade effekten på upptag av glukos, blodsocker.

Om och när diabetiker typ 1 tappar kontrollen över glukagonproduktionen ökar frisättning av glukos såväl som fria fettsyror och ketoner. Beta-hydroxybutyrat har en karboxylände (COOH) som ger ämnet svagt sura egenskaper vilket i alla ”normala” sammanhang (ketos) saknar betydelse men hos diabetiker typ 1 med nedsatt förmåga att reglera fördelningen av energiråvaror i blodet kan skapa problem i form av DKA, diabetisk ketoacidos.

Insulin har många funktioner i kroppen, men två av dem är särskilt betydelsefulla i detta sammanhang, glukagonstyrning i bukspottkörteln och glukosupptag från blodet.

Varje gång en insulinmolekyl når insulinreceptorn på en mottagarcell ”fastnar” den och dras in i cellen. Det betyder att ju mer glukos vi äter desto mer insulin kommer att förbrukas (dras in i målceller) och påverkar därmed inte glukagonproduktion/frisättning.* Att öka mängden insulin för att försöka uppnå en slags säkerhetsmarginal mot ketoacidos är dömt att misslyckas då man som kompensation, för att inte hamna i insulinkoma, måste öka mängden glukogena delar av maten. Om man gör det kommer en betydande del av insulinet att förbrukas för att hålla blodsockret under kontroll utan att påverka glukagonet och så löper det vidare.

Mer glukos (kolhydrater) i maten kräver mer insulin, det som ”blir över” styr glukagonet.

Min hypotes är att de som injicerar insulin bör ”grunda” med ett långtidsverkande alternativ för att undvika att helt förlora kontrollen över glukagonet. Detta även om man använder insulinpump med snabbverkande insulin då det inte är helt ovanligt med böjda slangar och lossnade infusionsset.

Kroppens funktioner är dynamiskt beroende av varandra och alla statiska resonemang är dömda att fallera i det långa loppet.


Beskrivningen ovan är inte fullständig, fler samband finns men i sammanhanget har de liten betydelse.

*) Detta resonemang gäller för diabetiker som huvudsakligen injicerar insulin. För ”friska” reglerar det egna insulinet glukagonproduktionen direkt i de Langerhanska öarna. Den blir därför mycket mer exakt och därför är det värdefullt att ha en egen produktion, om än liten.