Inlägg märkta ‘ketoner’

Ketogen kost innebär att man utnyttjar sin metabola flexibilitet och använder fett som huvudsaklig energiråvara. Dessa kan komma från mat och/eller egna lager, fettväv och andra platser där fett lagrats. Ketoner har fått en negativ klang, främst från de som inte inser deras naturliga roll i människors evolution. Läs Om ketoner för den misstänksamme, gärna även dessa inlägg på MatFrisk under kategorin ketoner.

Beta-hydroxybutyrat_2

Bilden: Beta-hydroxybutyrat, BHB (Wikipedia)

Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. Langfort J1, Pilis W, Zarzeczny R, Nazar K, Kaciuba-Uściłko H.

Abstract
Maximal oxygen uptake (VO2 max) and lactate threshold (LT) were measured during graded, incremental exercise in 8 healthy, untrained volunteers (aged 22 +/- 0.9 yrs) following 3 days on a control, mixed diet, or a ketogenic (50% fat, 45% protein and 5% carbohydrates) diet of equal energy content.

Min tolkning: Maximal syreupptagning och mjölksyrabildning studerades vid varierande nivåer av fysisk aktivitet efter en mixad kontrollkost samt en ketogen kost (50% fett, 45% protein och 5% kolhydrater) med lika energiinnehåll.

Before and after exercise tests acid base balance, plasma beta-hydroxybutyrate (beta-HB), free fatty acid (FFA), and some hormone concentrations were determined.

Min tolkning: Före och efter den fysiska aktiviteten mättes pH, beta-hydroxybutyrat (BHB*, en s.k. keton), fria fettsyror  och hormoner.

In comparison with the normal diet, the ketogenic diet resulted in: an increased VO2 max, decreased respiratory exchange ratio an a shift of LT towards higher exercise loads. Blood LA concentrations were lower before, during and after exercise. Post exercise blood pH, as well as pre-and post exercise base excess and bicarbonates were reduced.

Min tolkning: Den ketogena kosten ökade maximal syreupptag, minskade RQ** och mjölksyratröskeln flyttades till högre belastning. Blodets nivå av mjölksyra var lägre före, under och efter den fysiska aktiviteten.

Resting beta-HB concentration was elevated to approx. 2.0 mM, and FFA to approx. 1.0 mM. During a 1 h recovery period beta-HB decreased to 0.85 mM (p < 0.01) after the ketogenic diet, while plasma FFA did not change after exercise under either conditions.

Min tolkning: BHB i vila höjdes till 2.0 mM (millimol) och de fria fettsyrorna till 1.0 mM. Under efterföljande vila sjönk BHB till 0.85 mN efter den ketogena kosten medan de fria fettsyrorna inte påverkades av kosten.

Both the pre-and post-exercise levels of adrenaline, noradrenaline, and cortisol were enhanced, whilst plasma insulin concentration was decreased on the ketogenic diet.

Min tolkning: Den ketogena kosten ökade nivåerna av adrenalin, noradrernalon och kortisol både före och efter den fysiska aktiviteten medan insulinnivån sjönk.

It is concluded that the short-term ketogenic diet does not impair aerobic exercise capacity, as indicated by elevated VO2 max and LT. This may be due to increased utilization of beta-HB and FFA when carbohydrate stores are diminished. Stimulation of the sympatho-adrenal system, and cortisol secretion with reduced plasma insulin concentration seem to be of importance for preservation of working capacity.

Min tolkning: En kortvarig ketogen kost försämrar inte motionsförmågan. Detta kan bero på ökad användning av (”ketonen”) BHB och fria fettsyror när kolhydratförråden (glykogen) minskat.

PMID: 8807563 [PubMed – indexed for MEDLINE]

Den negativt klingande slutsatsen kommer antagligen av studiens målsättning som förmodligen utgick från att träningsförmågan skulle försämras på ketogen kost. Tyvärr har jag inte tillgång till studien i sin helhet. Där kan finnas pärlor att hämta, särskilt som utfallet verkar ha överraskat författarna.

Som test av ketogen kost är den halvhjärtad för att inte säga mesig. 45E% protein är långt över även det en kraftig fysisk aktivitet kräver, förmodligen borde det räcka med 20-25E%. En konsekvens av detta är att överskottet av proteinernas aminosyror till största delen omvandlas till glukos, något till ketoner. I praktiken betyder det att det resulterande energitillskottet från glukos inte är 5E% utan snarare 20E%. Detta motverkar ketosen.

Som jag ser det är det ett test av det jag vill kalla metabol flexibilitet. Se länk i inledningen.


*) BHB klassan vanligen som keton, men enligt kemisk logik är det en kort fettsyra (smörsyra) med en tillkopplad OH-grupp. Detta gör den vattenlöslig och kan transporteras i blodet, även in genom blod-hjärn-barriären.

**) RQ, respiratorisk kvot, är avgiven koldioxid per inandats syre. Koldioxid  kan betraktas som en avfallsprodukt efter all metabolism (”förbränning”). Se även Respiratorisk kvot, intressant eller som att se färg torka? för mer information.

Ibland är konventionella beskrivningar så djupt rotade att det är svårt att ens ana alternativa synsätt. En majoritet av kost- och fysiologilitteratur beskriver vårt näringsbehov med kolhydrater i början och vatten sist, närmast som en kuriositet. Utan att gå in på vattnets roll, som gör att det ovillkorligen hamnar först i min beskrivning, så vill jag föreslå ett annat synsätt som rimligen bör ha varit giltigt under större delen av människans evolution*:

  • Fett och glukos är människans huvudsakliga energiråvaror. 
  • I rimlig utsträckning  kan kroppen anpassa sig till och använda  kolhydrater/glukos som energiråvara utan akuta hälsoproblem.
  • Glukosrik mat kommer att, indirekt via insulin, hämma några av homeostasens hormoner som glukagon, adrenalin inklusive övriga katekolaminerkortisol och tillväxthormon.
  • Under insulinets verkan lagras glukos, så långt utrymmet räcker, som glykogen. Vi kan inte lagra mer än ett dygns energibehov i form av glykogen, överskott omvandlas till fettsyror och lagras som väsentligt kompaktare fett.
  • Redan efter ett kortare ätuppehåll, t.ex. en natts sömn, börjar vi gradvis utnyttja fett från egna vävnader.

Runs on fatEtt kilo fettväv anses motsvara 7500 kcal medan 2000 kcal glykogen (ungefär normalt lager av glukos) väger 1,85 – 2,5 kg**. Låt säga att en person i vila behöver 2000 kcal/dygn, det kräver då 1,85 – 2,5 kg glykogen (hela lagret) alternativt 0,267 kg fettväv.***

Observera att jag medvetet inte nämner proteiner då de i sig inte ger energi. När kroppen tagit sitt behov av dess byggstenar, aminosyrorna, kommer överskottet att rensas på sitt kvävehaltiga innehåll, återstoden blir till större delen glukos, en mindre del ketoner.


*) Människan har evolverat under 2 miljoner år eller mer. Mindre än 100 000 år sedan, kanske bara halva den tiden, uppträdde den moderna människan. Det finns fossila och arkeologiska spår som visar att de var samlare och jägare, dock inga som visar förekomst av kylskåp, matvarubutiker eller snabbmatshak. Sannolikt var därför matordningen väsentligt annorlunda än det överflöd vi är vana vid.

**) Det finns många uppgifter om hur mycket vatten varje gram glykogen binder, mellan 2,7 och 3-4 gram.

***) Detta under den osäkra förutsättningen att energiråvaror är likvärdiga, som traditionalister uttrycker det; ”alla kalorier är lika”.

I konventionella källor påstår man med till visshet gränsande sannolikhet att det är kolhydrater. Om du äter tre mål och mellanmål enligt Livsmedelsverket, dessutom fikar och äter lite godis som är rätt vanligt så kommer majoriteten av energin från kolhydrater. Så långt går det att hålla med dietister och SLV.

Konventionell beskrivning av energikällor

Min åsikt är att det vi för ögonblicket använder mest av är den viktigaste energikällan. Vi måste, utöver det vi äter, också inkludera det vi metaboliserar av redan lagrade ämnen.

Kolhydrater kan rimligen inte vara vår viktigaste energikälla då de förråd vi kan spara för framtiden i form av muskel– och leverglykogen är starkt begränsat, ungefär 2000 kcal. Det innebär på sin höjd ett dygnsbehov hos en person med låg fysisk aktivitet.

  • Cirka 300-400 gram av glykogenet (1200 – 1600 kcal) är bundet i muskelceller och kan bara användas exakt där de är lagrade. Om du springer eller cyklar benmusklerna tomma på glykogen så hjälper det inte att kroppens övriga muskelglykogen fortfarande har en hyfsad nivå.
  • Levern innehåller 100 – 120 gram (400 – 480 kcal). Där finns ett enzym som kan återställa D-glukos ur glykogen, dessutom glukostransportören GLUT2 som är dubbelriktad och kan exportera D-glukos ut i blodet. Leverglykogenet kan alltså gå dit det för ögonblicket bäst behövs.
  • Varje gram glykogen binder 2,7 gram vatten, ett fullt glykogenförråd väger då nästan 2 kilo / 2000 kcal. Andra källor menar att varje gram glykogen binder 3-4 gram vatten, alltså upp till 2,5 kilo.
  • Hjärnan är innesluten i ett begränsat utrymme och kan inte rymma ens små mängder lagrat glykogen då det ovillkorligen skulle innebära stora variationer i volym. Ett enda dygns energiförråd för hjärnan i form av glykogen skulle kräva nästan 1/2 liters volym! Då räknar jag med att varje gram glykogen kräver 2,7 gram vatten, om det är 3-4 gram som är korrekt skulle det bli 0,6 – 0,75 liter!

Äter vi kolhydrater i en mängd som inte omgående förbrukas eller får plats i något av glykogenförråden kan det omvandlas till fettsyror i levern. Dessa kan exporteras i blodet tillsammans med bärarproteinet albumin och kallas då fria fettsyror. Tre fettsyror kan även kopplas samman via en glycerolmolekyl (gjord av glukos!) till en fettmolekyl. Den kan exporteras i blodet via lipoproteiner (”kolesterol”) eller lagras på plats. Om det lagras mer i levern än det senare används kommer det med tiden att resultera i hälsoskadliga fettinlagringar i levern, NAFLD, Non Alcoholic Fatty Liver Disease.

När glukos omvandlas till fettsyror avlägsnas ett antal syreatomer vilket gör fett betydligt kompaktare räknat per energienhet, dessutom drar det inte till sig vatten som glukosen i sin ursprungsform. Varje glukosmolekyl i blod och celler kräver ungefär 190 vattenmolekyler för att sockerlösningen inte ska vara hälsofarligt koncentrerad. Om glukos kopplas samman i långa kedjor till glykogen minskar vattenbehovet avsevärt, men varje 1000 kcal glykogen väger likafullt 0,9 – 1,25 kg. 1000 kcal sparat i fettväv väger 135 gram och binder knappt något vatten.

  • Det går alltså utmärkt att bygga fettväv med glukos som råvara, att vända processen ger väldigt lite. Glyceroldelen i en fettmolekyl återvinns i levern till glukos, men mängden är liten, 15-20 gram/dygn hos en fastande person. Enzymer som kan återställa syremolekyler saknas nämligen.
  • I hjärnan kommer, enligt Reichard, acetoacetat att bilda aceton som i sin tur kan ge små mängder glukos, kanske 10 gram/dygn. (Källa: Cahill och Aoki)
  • Båda dessa glukosbidrag kan förefalla små men tillsammans motsvarar de nästan hjärnans obligata (ovillkorliga) glukosbehov.

En stor massa* av kroppens celler fungerar med fördel på fettsyror, hjärtat är ett viktigt exempel. Men det finns viktiga undantag och hjärnan är ett av dem. För att skydda hjärnan omges den nästan helt av ett filter, en barriär som de albuminburna fettsyrorna inte kan passera. Där måste det till vattenlösliga energibärare som glukos, acetoacetat eller beta-hydroxibutyrat. De två senare kallas ketoner men beta-hydroxibutyrat är i grunden en mycket kortkedjig karboxylsyra (Alla fettsyror är karboxylsyror) med en tillkopplad OH-grupp vilket sammantaget ger utmärkt vattenlöslighet och den kan transporteras på samma sätt som glukos i blodet. Ketoner kan utan svårighet passera barriären runt hjärnan och förse den med 70% av dess energibehov, möjligen mera, dessutom med 25% högre verkningsgrad än glukos. Ketoner ger mindre avfall (CO2, koldioxid) än glukos, räknat per energienhet.) Läs mer: Om ketoner, för den misstänksamme samt Något om resistent stärkelse samt kanske en överraskning

  • Vi har alla en liten ketonproduktion, även om den vanligen inte ger nämnvärda energibidrag. Trots ringa mängd är den avgörande för hjärnans funktion. Hjärnan består till övervägande delen av lipider (fetter och fettliknande ämnen) och de passerar normalt inte blod-hjärn-barriären. Lösningen kommer i form av ketoner av vilka lipider kan byggas på plats!

De röda blodkropparna dominerar antalet celler i kroppen (84%). För att bli tillräckligt små och kunna passera de finaste kapillärerna saknar de mitokondrier och kan därför bara utnyttja glukos som energibärare via den passiva glukostransportören GLUT1. De förbrukar små mängder energi och klarar sig gott även vid extremt lågt blodsocker. 1980 publicerade Cahill och Aoki en artikel där man visade att vid tillräcklig nivå av ketoner kunde man sänka blodsockret till 1 mmol utan att försökspersonerna märkte något negativt.

Cahill och Aoki - text

Cahill och Aoki - graf

Källa: Alternate Fuel Utilization by Brain av Cahill och Aoki i Cerebral Metabolism and Neural Function (1980?)

Jag anser att detta visar att glukos är ett av flera energibärande ämnen och dominerar endast om och när kolhydrater utgör en väsentlig del av maten. Så snart maten inte kommer regelbundet, en nattfasta räcker, börjar fettsyror och ketoner att ta över. De ger mycket stor uthållighet då energin i våra fettlager, även hos ordinärt smala och välbyggda personer, överskrider glykogenlagren med 55 gånger (110 000 kcal vs. 2 000 kcal) eller mer. Detta förklarar varför man kan överleva på enbart vatten och egna kroppsvävnader i ett par månader eller mer**.


*) Vi måste skilja på antal celler och deras massa. 84% av antalet celler vi har är röda blodkroppar, 0,2% är fettceller och 0,001% är muskelceller. Förhoppningsvis dominerar muskelceller massan, säkert är att fettcellsmassan aldrig rankar lägre än tvåa. Läs mer i Nature och Hur många celler har vi som reagerar på insulin? 

**) Matvägrande IRA-fångar i Mazefängelset på Nordirland, andra strejken 1981.

Hanås - ketonrisk vid insulinpump

Jag har de senaste dagarna snöat in på Ragnar Hanås bok Typ 1 Diabetes hos barn, ungdomar och unga vuxna. Här finns ett par fina observationer som kan kombineras till ett förslag.

Insulinpumpar har många förespråkare då de ger stora friheter, man behöver inte själv hålla tider för injektioner eller ha med sig en väska med utrustning. Föräldrar till barn med diabetes typ 1 kan slappna av lite och behöver inte känna en gnagande oro för att barnen eller de som ska hålla koll på insulinanvändningen inte följer schemat eller vet hur man anpassar sig till verklighetens krav. Men det finns nackdelar som man inte kan bortse från vilket Hanås tydligt framhåller.

För synskadade med rösttolkning: ”När du använder insulinpump har du en större risk att utveckla ketonförgiftning (ketoacidos) eftersom du har en mycket liten insulindepå. Ketoner är ett tecken på utebliven tillförsel av insulinet och talar för att något är fel på pumpen, slangen eller nålen.”

Hanås - Det räcker med en mycket liten egen insulinproduktionFör synskadade med rösttolkning: ”Det räcker med en mycket liten egen insulinproduktion* för att motverka bildningen av ketoner (diabetes-syror) genom att insulinet hämmar nedbrytningen av fettet till fettsyror (som sedan kan omvandlas till ketoner i levern). Den som har kvar en viss egen insulinproduktion under många år har därför ett visst ”skydd” mot syra-förgiftning. Vid svår stress eller en infektion får man dock en relativ insulinbrist eftersom behovet av insulin i denna situation ökar starkt. Den stegrade halten av fr a kortison och adrenalin medför en ökad produktion av ketoner genom en ökad nedbrytning av fett till fettsyror.”

Kombinera fördelarna genom att ”grunda” med ett långtidsverkande insulin som något efterliknar en liten egen insulinproduktion och dämpar bukspottkörtelns alfaceller från att producera onödigt mycket glukagon som aktiverar hög glukosfrisättning och gynnar en alltför aktiv fettmetabolism som leder till ostyrd ketonproduktion.

  • Ketoner** i rimlig omfattning är fullständigt normalt och önskvärt för att på ett dynamiskt sätt kunna utnyttja kroppens egna lager av energiråvaror. Problemet för insulinberoende diabetiker typ 1 är att när insulinnivån sjunker alltför lågt tappar alfacellerna sin styrning***.

Om en del av det totala behovet består av långtidsverkande insulin så minskar eller försvinner risken för ketoacidos på grund av de pumpfel som Hanås räknar upp. Både barn och föräldrar bör kunna sova lugnare på nätterna utan oro för att blodsockret blir för lågt (hypoglykemi på grund av extra insulin ”för säkerhets skull”) eller pumporsakad ketoacidos (mycket höga ketoner i kombination med hyperglykemi).


*) Eget kvarvarande insulin hos ”ettor” efter 40 år!

**) Om ketoner, för den misstänksamme

***) All diabetes framställs som en oförmåga att hantera och utnyttja blodsocker, men det akut livshotande för diabetiker typ 1 är den ohämmade fettmetabolismen när den dämpande signalen till alfacellerna via hormonet insulin saknas.

Ketoner är ämnen där en syreatom är dubbelbunden till en kolatom mellan två andra grupper, här R och R’imgresDen näringsmässigt mest betydelsefulla ketonen är beta-hydroxybutyrat, faktiskt inte en ”renlärig” keton. Namnet låter skrämmande men det är bara internationellt förståelig ”kemiska”.

  • Beta– berättar var det speciella hos ett ämne är beläget.
  • Hydroxy– beskriver en liten grupp atomer som består av en syre- och en väteatom, en OH-grupp.
  • Butyrat visar att det gäller en kolkedja med fyra kol.

Sätt nu samman denna information på samma sätt som vi bygger upp en ekvation ur dess delar. Vi får då en kort kolkedja som skiljer sig från fettsyran n-butansyra (4 kol, smörsyra, bilden nedan) genom att en väteatom invid den andra kolatomen i kedjan (räknat från metyländen, den ”feta” änden) ersätts med en OH-grupp.

N-butansyra

Detta resulterar i beta-hydroxybutyrat, märk den lilla skillnaden mot förra bilden.

Beta-hydroxybutyrat_2

Kort– och medellånga fettsyror har utomordentligt fördelaktiga hälsoegenskaper, de kan bland mycket annat minska eller eliminera epileptiska anfall och dramatiskt förbättra vissa typer av demens. Framförallt korta fettsyror är lösliga i blodet och kan transporteras dit där de behövs, med ett undantag, hjärnan. Där finns blod-hjärnbarriären för att skydda hjärnan och den sätter stopp för fettsyror.

Men den extra OH-gruppen hos beta-hydroxybutyrat förändrar allt. OH-grupper är speciella såtillvida att det endast saknas en väteatom för att bygga en vattenmolekyl, OH-grupper ”umgås” därför gärna med vatten, ju fler OH desto lättare. Beta-hydroxybutyrat har två sådana hydrofila (vattenälskande) grupper och den lilla förändringen gör att ketonen med största lätthet följer blodet vart som helst i kroppen, även genom blod-hjärnbarriären! En av fördelarna hos beta-hydroxybutyrat är att den är nästan lika energität som motsvarande fettsyra utan att, räknat per energi, dra med sig lika mycket syre som glukos.

Med tanke på dessa goda egenskaper finns ingen anledning att ifrågasätta ketoner/ketos? Med ett undantag!

Våra kroppar behöver energigivande råvaror där hormonerna insulin och glukagon i samarbete fungerar som ”trafikvakter” och förser blodet med energi från såväl mat som redan befintliga lager av energi i kroppens vävnader. Hos personer med kraftigt nedsatt eller obefintlig insulinproduktion fungerar inte denna styrning, glukagonet tar överhanden och aktiverar glukosfrisättning och fettmetabolism inklusive ketonproduktion.

Diabetes typ 1 (kraftigt nedsatt eller obefintlig insulinproduktion) är alltså i grunden en dysfunktion (bristande funktion) i fettmetabolismen till skillnad från diabetes typ 2 (”sockersjuka”, åldersdiabetes) där insulin inte får den önskade effekten på upptag av glukos, blodsocker.

Om och när diabetiker typ 1 tappar kontrollen över glukagonproduktionen ökar frisättning av glukos såväl som fria fettsyror och ketoner. Beta-hydroxybutyrat har en karboxylände (COOH) som ger ämnet svagt sura egenskaper vilket i alla ”normala” sammanhang (ketos) saknar betydelse men hos diabetiker typ 1 med nedsatt förmåga att reglera fördelningen av energiråvaror i blodet kan skapa problem i form av DKA, diabetisk ketoacidos.

Insulin har många funktioner i kroppen, men två av dem är särskilt betydelsefulla i detta sammanhang, glukagonstyrning i bukspottkörteln och glukosupptag från blodet.

Varje gång en insulinmolekyl når insulinreceptorn på en mottagarcell ”fastnar” den och dras in i cellen. Det betyder att ju mer glukos vi äter desto mer insulin kommer att förbrukas (dras in i målceller) och påverkar därmed inte glukagonproduktion/frisättning.* Att öka mängden insulin för att försöka uppnå en slags säkerhetsmarginal mot ketoacidos är dömt att misslyckas då man som kompensation, för att inte hamna i insulinkoma, måste öka mängden glukogena delar av maten. Om man gör det kommer en betydande del av insulinet att förbrukas för att hålla blodsockret under kontroll utan att påverka glukagonet och så löper det vidare.

Mer glukos (kolhydrater) i maten kräver mer insulin, det som ”blir över” styr glukagonet.

Min hypotes är att de som injicerar insulin bör ”grunda” med ett långtidsverkande alternativ för att undvika att helt förlora kontrollen över glukagonet. Detta även om man använder insulinpump med snabbverkande insulin då det inte är helt ovanligt med böjda slangar och lossnade infusionsset.

Kroppens funktioner är dynamiskt beroende av varandra och alla statiska resonemang är dömda att fallera i det långa loppet.


Beskrivningen ovan är inte fullständig, fler samband finns men i sammanhanget har de liten betydelse.

*) Detta resonemang gäller för diabetiker som huvudsakligen injicerar insulin. För ”friska” reglerar det egna insulinet glukagonproduktionen direkt i de Langerhanska öarna. Den blir därför mycket mer exakt och därför är det värdefullt att ha en egen produktion, om än liten.

 

Varning, detta är ett inlägg för nördar!

Insulin och glukagon är två hormoner som utsöndras från de Langerhanska öarna i bukspottkörteln. Hos en frisk människa samarbetar de för att dirigera sammansättningen av blodets energibärare utifrån tillgång från tarmens innehåll samt befintliga lager som fettväv och muskler.

Glukagon

Klicka på bilden för att se en rörlig stereomodell av glukagon.

I detta samarbete dominerar insulin då betacellerna kan mäta halten av glukos i blodet, blodsocker. Insulin sipprar alltid ut hos friska, men ökar abrupt när blodsockret stiger. Eftersom betacellerna i huvudsak utgör det inre av de Langerhanska öarna och de glukagonproducerande alfacellerna är talrikare i utkanten kommer insulinet, när det passerar på vägen ut, att påverka/hämma glukagonproduktionen.

Alfacellerna har ingen egen förmåga att mäta blodsockret utan styrs via insulin. Styrningen sker mycket lokalt i den betydelsen att det inte finns någon övergripande hämning av alla alfaceller samtidigt, därför kommer även glukagon att sippra fram samtidigt som insulin. Samarbetet är därför inte av/på utan en kontinuerlig förskjutning dem emellan.

Insulin har många uppgifter i kroppen, en av dem är att aktivera kroppens utnyttjande av glukos som energiråvara och/eller dirigera om det till korttidslagring som glykogen i muskler och lever samt längre tids lagring som fettsyror/fettväv. En annan effekt, direkt och/eller indirekt genom att hämma glukagon, är att hämma frisättning av lagrad energi när blodomloppet innehåller mer blodsocker än behövligt.

Glukagonets aktivitet ökar när blodsocker/insulin sjunker, det frigör glukos ur leverglykogen samt stimulerar lever och njurar att producera och frisätta glukos via glukoneogenes, dessutom fria fettsyror och ketoner via fettmetabolismen. Produktionen ökar även av adrenalin samt av några aminosyror, proteiners byggstenar. Viss hämmande effekt kommer av fria fettsyror samt ketoner i blodet. Glukagon kan även produceras av vävnader i magsäcken och en hypotes menar att det centrala nervsystemet har inverkan. Att glukagon är ytterst effektivt för att frisätta glukos från egna lager och vävnader visas av att man i svåra fall av blodsockerfall/insulinkoma ger glukagoninjektioner.

Se även Sockersjuka/diabetes typ 2, vilken är kontroversen i en tidigare blogg.

Hos diabetiker typ 1 är betacellernas insulinproduktion starkt hämmad, även om en relativt nyligen publicerad studie visar att viss egen insulinproduktion kunnat påvisas upp till 40 år efter sjukdomsdebuten. Detta gör att det inte finns tillräckligt aktiv återkoppling för att hämma glukagonproduktionen. När den hämmande effekten minskar/försvinner ökar blodets samlade innehåll av energibärande råvaror långt utöver vad kroppen kan använda. Detta innefattar såväl blodsocker som ketoner. De senare är lätt sura som i begränsade mängder hos friska och välreglerade diabetiker lätt buffras (kompenseras) till normala pH-värden. Om processen tappar sin styrning sjunker pH, ett av kriterierna för diabetisk ketoacidos, DKA, som kännetecknas av höga keton- och blodsockervärden samtidigt. Lägg märke till att de (sky)höga blodsockervärdena inte främst beror på maten, glukosen produceras av och frisätts ur kroppens egna vävnader.

Så över till en variant som fick sitt namn i en studie i BMJ 1973, Euglycaemic Diabetic Ketoacidosis av Munro, Campbell, Cuish och Duncan. Man beskrev 37 fall av 211 av diabetisk ketoacidos som skilde sig från de övriga genom att de inte uppvisade skyhögt blodsocker, de var 16,7 mmol/L eller lägre. Detta till synes udda värde kommer av deras måttenhet och motsvarar 300 mg/100 ml. Euglykemisk tolkas av många som ”normala” blodsockervärden, vilket är långt från sant. Normala blodsockervärden hos friska samt välreglerade diabetiker ligger snarare vid och under 6 mmol/L.

Studien omfattade 11 kvinnor och 6 män, medelålder 18,6 år. Deras medelinsulinanvändning var 101 IU/dygn. En av dem stod för inte mindre än 15 episoder, patienten i fråga diagnosticerades även för cancer i tolvfingertarmen. Ett problem när det gäller tolkningen av studien är att nästan hälften av alla episoder av ketoacidos är kopplade till denne person utan att hans/hennes data särredovisas.

Redan i samband med upptäckten av insulin på 20-talet fann man ett motreglerande ämne som visade sig vara glukagon. Först på 70-talet kom en mer detaljerad beskrivning av dess effekter och jag vill påpeka att den studie jag refererar till inte med ett ord nämner glukagon trots att det med dagens kunskaper är betydelsefullt hos friska och helt avgörande i alla former av diabetisk ketoacidos.

Av alla symtom som redovisades vid euglykemisk ketoacidos, 65 fall och 9 olika, gällde 32 kräkning:

The frequent association with vomiting would suggest that vomiting itself may be a cause, aggravating factor, and a consequence of the metabolic acidosis.

The patients’ mental alertness and in most their ability to walk into hospital, even when severely ketoacidotic, supports the concept that clouding of consciousness is unrelated to the severity of the ketoacidosis but is dependent on severe hyperglycaemia and hyperosmolarity.

Min tolkning: Patienternas vakenhet och förmåga att ta sig till sjukhuset även vid svår ketoacidos stödjer tanken att grumling av medvetandet är orelaterat till ketoacidosens svårighetsgrad men beror av högt blodsocker och bristande vätskebalans.

Så den avslutande meningen:

The department’s policy of encouraging diabetics to adjust their own dose of insulin may, in part, be responsible for our not uncommon experience of euglycaemic ketoacidosis, which has previously attracted very little attention. These patients form one end of the broad spectrum of diabetic metabolic decompensation but are of therapeutic importance because with appropriate management biochemical death should not occur.

Min tolkning: Uppmaningen till diabetiker att själva dosera insulin kan till en del vara skälet till att vår erfarenhet av euglykemisk ketoacidos inte är ovanlig trots att den dragit till sig mycket liten uppmärksamhet. Dessa patienter är en del av det breda spektrum av diabetesens konsekvenser men viktig då en korrekt behandling gör att död inte inträffar.

Min åsikt är att texten skrevs när bekväm och snabb mätning av blodsocker fortfarande inte var vanlig och insulinet doserades mer på en höft. Dessutom betraktades diabetes typ 1 som en brist i blodsockerkontrollen istället för en defekt i styrningen av fettmetabolismen. Märkligt nog lär man fortfarande ut detta vilket gör att såväl vården som diabetiker typ 1 har svårt att greppa fysiologin bakom problemen, man koncentrerar sig på att påverka ett mätvärde, blodsocker, snarare än dess bakgrund och konsekvenser.

Min hypotes, grundat på denna text, är att euglykemisk ketoacidos kommer av nedsatt kontroll av hormonet glukagon i kombination med bristande vätskebalans, varav den senare möjligen är den utlösande faktorn.

Så tänker jag.


Ovanstående beskrivning av insulin, glukagon och deras egenskaper var för sig och i samverkan är inte fullständig, fler faktorer är allmänt kända och andra kan tillkomma.

Skälet till att jag använder denna text är att den är ursprunget till begreppet euglykemisk ketoacidos, syraförgiftning vid ”normala” blodsockervärden.

Kolhydrater av nämnvärd betydelse för vår ämnesomsättning kännetecknas naturligtvis av sina beståndsdelar, de enkla sockerarterna (monosackariderna) glukos, fruktos och galaktos, men även av molekylär sammansättning och kemiska bindningar.

De ”snabbaste” kolhydraterna är, förutom monosackariderna, de som våra enzymer lätt kan spjälka. Vi kan nämligen inte ta upp annat än enskilda monosackarider genom tarmslemhinnan.

De allra ”svåraste” kallas fibrer (lösliga resp. olösliga). Dessa spjälkas inte alls förrän de når tjocktarmens bakterieflora som till yttermera visso även bearbetar dem till kortkedjiga fettsyror, t.ex. butansyra (smörsyra) en mättad fettsyra med 4 kol som tillskrivs goda egenskaper för en välfungerande tjocktarm och även lär motverka cancer.

Resistent stärkelse, RS, intar en slags mellanställning och kan variera beroende på temperaturen hos maten. Kolhydraterna i varm potatis, t.ex. är mycket lätt att spjälka till glukos, men om den serveras kall byter bindningarna i kolhydraterna karaktär och resistenta mot nedbrytning.

Låt oss titta närmare på uppbyggnaden av butansyra/smörsyra:

smörsyraDet finns en annan välkänd molekyl som är väldigt lika, tyvärr brukar den presenteras på ett sätt som gör att den verkar helt främmande:

Beta-Hydroxybutyric_acidHär används ett kortfattat notationssätt som är självklart för kemister och utgår från att läsaren skall känna till att alla ändar, vinklar och förbindningar i streckteckningen representerar en kolatom. Dessutom förutsätter man kunskapen att kolatomer har 4 (fyra) bindningar till andra atomer samt att om dessa inte är särskilt identifierade så är det väteatomer (H). Låt oss se hur molekylen ser ut om vi skriver ut den som i första exemplet:

Betahydroxybutyrat

Nu syns likheten tydligare, en OH-grupp vid andra kolatomen från omega-änden/metyländen har ersatt väteatomen i smörsyran.

Vilken är nu denna molekyl som också kan beskrivas på ett ännu krångligare* sätt:

Beta-hydroxybutyratDet är beta-hydroxybutyrat, den viktigaste av ketonerna.

Vid närmare eftertanke vill jag förtydliga följande: En av de korta fettsyror (från RS) som ”alla” brukar hylla för sina goda egenskaper är mättad samt att den knappt skiljer sig från en av de ketoner som många är skiträdda för.


*)  Tips för att klura ut sista bilden: Karboxylgruppen (COOH) finns till höger i de två första bilderna.

Våra celler använder ATP, adenosintrifosfat, samt i viss utsträckning ADP, (adenosindifosfat) för sin energiförsörjning. Dessa produceras i stor mängd, i storleksordningen halva till hela kroppsvikten per dygn, i mitokondrier som finns i många men inte alla celler.

Fettsyror, ketoner och glukos är några energibärare som cellerna tar upp, processar/förädlar för att sedan mata mitokondrierna. I några få av kroppens delar är det enbart glukos som fungerar, de röda blodkropparna, delar av njurarna samt en mindre del av hjärnan (uppskattningsvis 1/4 – 1/3 av dess energibehov).  I och för sig bör jag kanske lägga till att även cancerceller har ett kraftigt ökat glukosbehov, då deras mitokondrier vanligen är skadade och overksamma.

Fett (triglycerid/triacylglycerol*) levereras via vattenlösliga lipoproteiner** (någon av de transportfarkoster som slarvigt kallas ”kolesterol”). En komplett triglyceridmolekyl kan inte passera via cellmembranet in i målcellen utan måste först delas upp i sina beståndsdelar. Enzymet lipoproteinlipas (LPL) bryggar över mellan lipoproteinet och mottagarcellen och i samarbete med coenzymet apoC-II*** ”petar det in” en vattenmolekyl mellan vardera fettsyran och glycerolmolekylen som då delar sig. Detta kallas hydrolys**** där hydro syftar på vatten och lys betyder spjälka.

De avspjälkade fettsyrorna transporteras via lipidtransportörer i SLC-27-familjen in i cellen medan det vattenlösliga glycerolet sköljs iväg via blodet och återvinns i levern till glukos.

En fettsyra har, liksom korven, två ändar. Metyländen består av tre väteatomer bundna till en kolmolekyl. Det som liknar en blixt symboliserar att fettsyran fortsätter vidare. Molekylsnutten -CH3 dyker upp i många sammanhang i kroppens kemi och kan betraktas som en avslutning, den sätter punkt för en kolkedja.

Fettsyrors metylände Omega

Den andra är karboxyländen (nedan) som består av en kolmolekyl, två syre och en vätemolekyl. En av syremolekylerna samt vätet sitter samman i en hydroxylgrupp (OH). Även här har blixtsymbolen samma betydelse.

Fettsyrors karboxylände Alfa

Mellan dessa två molekylsnuttar finns ett varierande antal kolmolekyler bundna till väte. OH-gruppen är av särskilt stort intresse då den kopplar till glycerolmolekylen för att bygga en triglycerid, en komplett fettmolekyl. Snutten -COOH är en vanlig kopplingspunkt mellan diverse ämnen och när en sammankoppling görs, en förestring, frigörs en vattenmolekyl, H2O. Se illustrationen nedan.

Kortkedjiga fettsyror kan, med hjälp av bärarproteinet albumin, transporteras direkt av blodet och kommer därför omgående att föras från tarmpaketet via blodet och ut i vävnader utan vidare processande. Detta gör de kortkedjiga fettsyrorna (särskilt C8:0 och C10:0) i kokosfett till en oerhört snabbverkande energiråvara.

Ketoner bildas i levern med fett/fettsyror som utgångspunkt. De är vattenlösliga, transporteras i blodet och kan nå alla kroppens celler. De passerar utan vidare blod-hjärnbarriären och försörjer vid behov större delen av hjärnan med energi. Då ketoner har mindre andel syreatomer än glukos för samma mängd energi är dess verkningsgrad betydligt större (25-28-30%) än glukos vid drift av mitokondrierna och lämnar mindre mängd ”avfall” (koldioxid) efter sig. Ketoner gör sannolikt att de som fastar efter några dagar känner sig upprymda, euforiska och ”fulla av energi”.

Fettsyror som levereras in i en fettcell byggs åter upp till triglycerider/triacylglycerol, kompletta fettmolekyler. Till detta krävs en (nybildad) glycerolmolekyl, byggd av glukos. Dessa kommer in i fettcellen via insulinoberoende GLUT1 (Glukostransportör 1) eller, om blodsockret är förhöjt, insulinaktiverat GLUT4. När alla komponenter finns på plats binds tre fettsyror, via sina OH-grupper, till glycerolet genom förestring.

Glycerol - fettsyror

Bilden: Atomerna inne i boxarna kommer dels från glycerolet till vänster och dels från fettsyrornas OH-grupper. De kombineras vid förestringen till tre vattenmolekyler som avges, vilket minskar utrymmesbehovet inne i fettcellen.

Insulin aktiverar LPL samtidigt som det gör större mängder glukos tillgängligt för att bilda glycerol inne i cellen. Insulin skyndar därför på förestring/fettbildning och detta bör vara bekant för diabetiker typ 1 som får fettkuddar där man injicerat alltför ofta. Det är även skäl till att diabetiker typ 2, sockersjuka, i 80% av fallen drar på sig en avsevärd övervikt under det fleråriga inledningsskedet av sjukdomsutvecklingen innan diagnosen.

När fettmolekylen utnyttjas sker det omvända men med andra aktörer. Inte heller nu kan en komplett triglycerid/triacylglycerol tränga ut och om så skulle ske så är ändå en fettmolekyl inget som blodet kan transportera. Därför träder ett annat enzym, Hormonkänsligt lipas (HSL), in i handlingen inne i fettcellen. HSL aktiveras av hormonerna adrenalinnoradrenalin och glukagon och inleder hydrolysen**** av fettmolekylen till separata fettsyror och glycerol. När HSL avskiljt den första fettsyran fullföljs hydrolysen i snabb följd av diglyceridlipas och monoglyceridlipas. De två senare enzymerna är långt snabbare och tillgången till HSL bestämmer därför reaktionshastigheten.

  • Insulin deaktiverar HSL och är ett effektivt hinder för att utnyttja kroppens fettväv som energikälla.

Frigjorda fettsyror passerar ut genom cellmembranet och glycerolen sköljs som vanligt iväg via blodet till levern för återvinning. Fettsyrorna hämtas upp av blodets transportproteiner, albumin. Detta kit kallas märkligt nog fria fettsyror och transporteras runt i blodet till dess de stöter på en cell som behöver dem.

Beskrivningen är långt ifrån fullständig.


*) En fettmolekyl kallas ofta triglycerid men även triacylglycerol som är en kemiskt korrektare benämning. Tri står för tre, acyl för fettsyra och glycerol för just glycerol.

**) Dessa kan vara stora kylomikroner, IDL (som är delvis tömda kylomikroner) eller någon av LDL-fraktionerna.

***) apoC-II utgör en del av lipoproteinhöljet och fungerar som ett medlevererat specialverktyg, ungefär som IKEA:s sexkantnyckel.

****) Hydrolys innebär att ett enzym spjälkar molekyler genom att sätta in en vattenmolekyl i ”skarven”. Det omvända förloppet kallas förestring.

”…om jag som Typ1 skulle testa LCHF, vad skulle jag då kunna äta inför natten om sockret är lite för lågt att sova på? Juice räcker inte hela natten för mig.”

Vi har egenproduktion av glukos (blodsocker) från proteiner i mat samt aminosyror som återvinns från kroppens upprensning av gamla/skadade celler. Till detta kommer ett mindre bidrag från den glycerolmolekyl som binder samman tre fettsyror till en triglycerid (”fett”).

När vi transporterar fett i blodbanan till en cell, oavsett om det kommer från mat eller ”egna lager”, så kan triglyceriden som helhet inte tränga in genom cellmembranet. Den måste först delas upp i sina tre fettsyror (som passerar in i cellen via transportproteiner, bland andra ur SLC27-familjen) och den vattenlösliga bärarmolekylen glycerol som sköljs vidare i blodet till levern för att återvinnas som glukos. Vad som sedan händer med den enskilda glukosmolekylen beror på omständigheterna, men den står i vart fall till kroppens förfogande.

Kroppen behöver måttliga mängder aminosyror, proteiners beståndsdelar, för vävnader, hormoner, enzymer etc. Eventuella överskott bryts ner och kvävehaltiga avfallsämnen avges via urinen. Cirka 80% av aminosyror över basbehovet blir energibärare som glukos och/eller ketoner. Dessa proteiner kan du ha ätit eller tar från kroppens återvinningssystem för ”bättre begagnade celler”.

Vi har en egenproduktion av glukos som ständigt är igång så snart vi metaboliserar fett eller protein, oavsett varifrån det kommer. Detta gäller friska, diabetiker typ 1, diabetiker typ 2 eller nästan vilken grupp du än nämner. Någonstans lär det finnas ett eller annat undantag så jag vågar inte skriva att det bokstavligen gäller alla.

Ingen människa får en farlig brist på glukos utan seriös anledning och dit hör inte vanlig hunger. Det finns många som totalt matstrejkat över en månad utan att något allvarligt inträffat. De som matstrejkar sig till döds brukar hålla på ytterligare en månad.

Problem uppstår däremot snabbt om man hämmar fettmetabolismen för hårt. Detta sker om bukspottkörtelns alfaceller inte längre producerar tillräckligt av det fettförbränningsstimulerande (puh) hormonet glukagon, som när insulinanvändande diabetiker tar för mycket insulin.

Ett annat problem uppstår om glukagonproduktionen blir okontrollerat stor, som vid insulinbrist Då metaboliseras fett utan begränsning samtidigt som blodsockerhalten stiger långt utöver det önskvärda. Det som är livsfarligt med denna situation är att de frigjorda fettsyrorna börjar bilda obegränsade mängder av lätt sura ketoner vilket på ganska kort tid leder till diabetisk ketoacidos.

Gemensamt för båda dessa situationer är att insulin är inblandat.

  • Är mängden för hög hämmas egenproduktionen av glukos och du måste äta det istället.
  • Är mängden för låg släpps glukagonproduktionen fri och du får både högt blodsocker samt ketoner i överskott.

Om du dricker snabbabsorberad juice på kvällen måste du ta insulin som kompensation. Det hämmar glukagonet och den egna glukosproduktionen. Och konsekvensen blir just den du beskriver: ”Juice räcker inte hela natten för mig.”

Jag föreslår att du justerar ner mängden insulinkrävande kolhydratbaserad mat redan under aftonen och avslutar kvällen med några skivor riktigt fet ost. Detta ger det tillskott av fett och protein som kroppen i lugn takt kan göra glukos av.

Diabetes Solution - bok

Doktor Richard K. Bernstein har haft diabetes typ 1 sedan många år och bland annat skrivit Diabetes solution där han beskriver hur man kan/bör minska insulinanvändningen.

Två huvudvarianter plus mellanformer ryms inom begreppet diabetes. Den förste att beskriva sjukdomen i skrift under namnet Diabetes Mellitus var Thomas Willis, en av de första i Royal Society, och det skedde 1674 i Pharmaceutice Rationalis. Han noterade att det bland hans ytterst välbeställda patienter började dyka upp en åkomma som innebar ett kraftigt förhöjt urinflöde med söt smak. I läkarnas dåtida analysarsenal ingick att smaka på urin. Inte förenat med någon större risk, urin är normalt helt steril, sannolikt beroende på en kraftig produktion av fria radikaler i urinsystemet.

  • Willis skapade namnet av tre ord, ett grekiskt och två latinska. Diabetes kommer från grekiskan och betyder ”stort urinflöde”.  Mel (lat.) står för honung och itis (lat.) inflammation. Fritt tolkat: ”Inflammation med stort flöde av honungssöt urin”

Han kunde lika väl ha valt det mer rättframma polyuria saccharitis, latin för sockerinflammation med stort urinflöde. Men gjorde det inte och han hade sina skäl. Det hör till saken att han var en högt aktad societetsläkare och de patienter där han observerade symtomen idkade ofta omfattande handel med just socker.

Redan på den tiden var sockerlobbyn stark. Sockerförbrukningen var liten men ändå betydande i de högre samhällsklasserna. De som styrde handeln och såg den framtida vinstpotentialen var samtidigt hans kundunderlag, alltså valde han att hålla en låg profil för att inte i onödan störa relationerna med sina patienter. Skulle den rättframmare beteckningen (ungefär sockersjuka) bli allmänt använd skulle det naturligtvis skada sockerhandlarna. Han valde alltså en mjuk linje, beskrev den som honungs- snarare än socker-. Det senare skulle ha varit alltför provokativt. Följ pengarna från fickan till källan.

Sugar Blues

Källa: ”Sugar Blues” av William Duffy ISBN 0-446-34312-9, första upplagan 1976, denna: 1993

En del diabetiker tycker att deras sjukdom bagatelliseras när den kallas ”sockersjuka”. Den blir liksom mindre allvarlig och sockersjuka låter inte lika ”fint” som diabetes (mellitus) typ 2. Att termen simpelt nog beskriver sjukdomens symtom upptäcker den som kan lite latin och grekiska. Eller läser i ett lexikon.

Sockersjuka, åldersdiabetes eller diabetes typ 2 innebär att man inte längre använder glukos i blodet, blodsocker, som energiråvara i full utsträckning. När glukoskoncentrationen i blodet hamnar över njurtröskeln (8 – 12 mmol/L) kommer överskottet, så gott det går, att sköljas ut i urinen som då blir mycket riklig och smakar sött. Detta sker i störst utsträckning när man äter kolhydratrik mat, till exempel socker. Detta är den helt dominerande varianten och gäller fler än 8 av 10 alla som kallas diabetiker. Symtom och långtidsprognos försämras när de äter kolhydrater/socker* och det är alltså fullt logiskt att använda begreppet sockersjuk.

Det som i dagens läge är annorlunda är att begreppet åldersdiabetes börjar bli mindre relevant. Sockersjuka har normalt en utveckling över många år och visade sig förr sent i livet men nu uppträder den så tidigt att medicinindustrin, i detta fall danska Novo Nordisk, vädrar en ny kundkategori; barn.

När vi ätit omvandlas en del av maten till socker i blodet. För att flytta sockret ifrån blodet till muskler och andra celler i kroppen behövs ett hormon som heter insulin. Har ditt barn typ 2-diabetes kan hans/hennes kropp inte tillverka tillräckligt mycket insulin som behövs och/eller inte använda det på rätt sätt. Mängden socker i barnets blod blir då för hög, och barnet behöver medicin. Den här studien undersöker hur en ny medicin påverkar blodsockret och vikt hos barn och ungdomar med typ 2-diabetes.

Källa: Novo Nordisk, Studie för barn och ungdomar med typ 2-diabetes

För att delta i studien skall de vara mellan 10-16 år och 11 månader och ha fått diagnosen diabetes typ 2. Här framgår med all önskvärd tydlighet att begreppet åldersdiabetes inte längre är fullt relevant men att socker är ett problem.

Bakgrund, först en välfungerande ickediabetiker: 

Bukspottkörtelns betaceller producerar och frisätter insulin, ett hormon med flera funktioner, här tre av dess många effekter.

  • Den mest omtalade är att signalera till lever-, fett- och muskelceller att snabbare släppa in överskott av glukos från blodet, man säger att “insulin sänker blodsockret”. Betacellerna har förmåga att mäta blodets glukosnivå och reagerar därefter, men med viss fördröjning.
  • Genom att släppa in glukos i lever- och fettceller stimuleras fettlagring.
  • Stegrad insulinhalt blockerar fettmetabolismen genom påverkan på alfacellernas glukagon, se nedan. 

Alfaceller, som ligger tätt intill betacellerna, producerar hormonet glukagon som stimulerar fettmetabolism och frisättning av glukos från leverns glykogenförråd. Glukagon har alltså till stor del motsatt effekt som insulin, det ökar energinivån i blodet i form av fria fettsyror, ketoner och glukos när energitillförseln från tarmpaketet minskar.

  • Alfaceller har ingen förmåga att mäta blodsocker utan reagerar istället på hur mycket insulin som passerar i deras omedelbara närhet. När blodsockerhalten är “hög” ökar insulinet vilket nedreglerar alfacellerna och glukagonproduktionen minskar. Detta då blodets energimängd redan är nog så hög och en varaktig glukoshalt på 6 mmol/L eller mer på sikt ger kärl- och andra skador.
  • När blodsockret sjunker minskar insulinbehovet, glukagonproduktionen kommer gradvis igång för att återställa blodets energinivå till rimliga och önskvärda nivåer.  Utöver detta finns ytterligare hormoner som höjer blodsockret, bl.a. stresshormonerna adrenalin och kortisol.
  • Adrenalin är ytterst snabbverkande och höjer momentant vår prestationsförmåga inför flykt eller angrepp, men dess verkan avklingar tämligen snabbt, i storleksordningen någon timme. Kortisol är betydligt mer långvarigt.

Hormonet utsöndras som svar på signaler från det sympatiska nervsystemet och står därför utom direkt och medveten kontroll. Även sådant som panikångest ökar adrenalinet.  Allt detta och mer därtill sker snabbt, effektivt och vältajmat hos en ickediabetiker. Effekten ger ett blodsocker med rimliga variationer, tillfredsställande energitillgång i blodet och därför måttliga och lättstyrda matvanor utan viktuppgång. Den som har förmånen att ha en i detta sammanhang välfungerande kropp kan vara oförstående för de som har problem och ger därför gärna rådet “Ät mindre och spring mer!”  

Om man äter onödigt mycket blodsockerhöjande mat (kolhydrater = glukos, stärkelse) så når man lätt eller passerar gränsen för området där styrningen fungerar optimalt. Insulin dominerar totalt över glukagonproduktionen och kan därmed störa kroppens egen nödvändiga, naturliga och balanserande frisättning av redan lagrad energi från fett i lever, fettväv samt från leverglykogen. Insulinet håller även “glukosisläppen” (GLUT4) till muskler och fettceller öppna onödigt länge vilket tillsammans gör att blodsockret kan sjunka under det önskvärda vilket ger en blodsockerdipp, vilket kroppen upplever som energibrist och ger hungersug. 

Personer med sockersjuka/diabetes typ 2 kan i flertalet fall bli kvitt medicinering genom att äta en kolhydratfattig kost. Den räddhågade kan ju alltid dra ner på kolhydraterna lite försiktigt och gradvis minska sin blodsockermedicinering, har man möjlighet att mäta blodsockret desto lättare går det.

Diabetes typ 1 är en helt annan sjukdom där kroppen saknar förmåga att reglera ner frisättning av hormonet glukagon som i sin tur eldar på fettmetabolismen, den helt avgörande skillnaden. Rena typ ettor är färre än 2 av 10, möjligen under 1 av 10.

Om kroppens förmåga att producera insulin minskar eller helt försvinner, som hos diabetiker typ 1, upphör kroppens förmåga att mäta blodsockret, reglera fettmetabolismen samt sända signaler till fett- och muskelceller att ta upp överskottsblodsocker. De två första egenskaperna, mätning och reglering, är överlägset viktiga då de motverkar uppkomsten av diabetisk ketoacidos.

  • Diabetisk ketoacidos kommer av en ostyrd fettmetabolism som översvämmar blodet med energi i form av ketoner samt outnyttjat glukos vilket kan avancera till att bli direkt livshotande redan inom timmar/dagar. En diabetiker typ 1 som inte har tillräckligt insulin från kvarvarande egen produktion + tillfört för att hantera alfacellernas glukagonproduktion avlider av detta långt innan förhöjda blodsockerhalter blir problematiska.

Den överlägset farliga komponenten i diabetes typ 1 är tveklöst avsaknaden av styrd fettmetabolism. 

Utöver sockersjuka/åldersdiabetes/diabetes typ 2 och störd fettmetabolism/diabetes typ 1 finns LADA (Latent autoimmune diabetes of adults) och MODY (Maturity onset diabetes of the young). Det är heller inte ovanligt att sockersjuka med undermålig behandling ”bränner ut” sina betaceller (betacellsvikt) och drar på sig den ultimata diabetesupplevelsen; de saknar tillräckligt insulin i kombination med bristande förmåga att hantera glukos som energiråvara.

Det är mycket otillfredsställande att två väsentligen skilda åkommor får likartade namn, men möjligen ingår det i en långsiktig vision av insulinproducenter att skapa en sammanhållen behandlingsstrategi för att drastiskt öka kundunderlaget. Tyvärr skapar det även inbördes kontroverser mellan sockersjuka som förvärvat sina problem på egen hand samt diabetiker typ 1 som oförskyllt ”drabbats av en djefla otur”**.

Själv använder jag både sockersjuk och diabetes typ 2 men det förra helst efter att ha förklarat vad åkomman består i. En diabetiker typ 2 har, som jag ser det, rätt att kalla sin åkomma efter behag utan att någon med en annan sjukdom har tolkningsföreträde.


*) Alla kolhydrater som ger nämnvärda tillskott av energi i maten består av tre enkla sockerarter, glukos, fruktos och galaktos. De finns i ett antal olika kombinationer i den mat vi äter, men först efter att kolhydraterna brutits ner till sina beståndsdelar kan de passera in till blodet i tunntarmen.

**) Även om den ärftligt beroende komponenten är låg i absoluta tal så är den påtaglig: Risken för diabetes typ 1 för den som inte har sjukdomen i familjen är nere på rikets normalnivå, 0,2%. Om mamman är anlagsbärare stiger risken 7,5 gånger, är pappan anlagsbärare ökar risken 30 gånger och har ett syskon diabetes typ 1 är risken 25 – 50 gånger större. Detta om något säger att risken för att få diabetes typ 1 i familjer med manifest typ 1 ökar avsevärt och därför kan kallas ärftligt beroende. Se inlägget Dubblas diabetesrisken i parrelationer?