Arkiv för kategori ‘Kemi’

En kolloid (gr. kolloid, ”lim”) är ett system där ett ämne är finfördelat (dispergerat) i ett annat, och det finfördelade ämnets partiklar har åtminstone i någon dimension en storlek mellan en nanometer och en mikrometer.*

Källa: Wikipedia

Silveratomen är knappt 150 pm = 0,15 nanometer, silverjonens storlek skiljer sig förmodligen inte nämnvärt och fyller inte storlekskriteriet, det går dessutom aldrig aldrig åstadkomma en tillräckligt stor ”klump” silverjoner, på grund av sina lika laddningar stöter de bort varandra.

  • En smal ljusstråle i genomsynliga kolloider sprids som i dimma och visar att det är partiklar.
  • Partiklarna i en kolloid sedimenterar inte (faller till botten), de svävar omkring.

Kolloidkemin kallas ofta en bortglömd del av kemin. Man stöter dock dagligen på kolloidala material i vardagslivet – smör, mjölk, grädde, rök, dimmaasfalt, bläck, gelatin och blod.

Ion Silvers produkt Ionosil (kollodialt silver) marknadsförs som 90% silverjoner, resten partiklar. Då den domineras av silverjoner (90% Ag+, dock i liten mängd) kan den liknas vid oerhört kraftigt utspätt silvernitrat. (100% av silvret som Ag+). Det sista påståendet om silvernitrat är kontroversiellt bland anhängarna, men jag återkommer till det framöver.

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?,  Silver – del 3, utspädningseffekten

Fortsättning följer.


brownsk-ro%cc%88relse

Överkurs, enbart för nördar: Ett av skälen (det finns fler) för att partiklar i en kolloid svävar omkring beror på Brownska rörelser.

  • Enskilda molekyler i lösningsmedlet har egenrörelser (rörelseenergi) som tillsammans definierar ämnets temperatur och tryck (om det är en gas).
  • Ett ämnes uppmätta temperatur är beroende av medelvärdet av dess molekylers rörelseenergi.
  • Slumpen gör att vissa av ämnets molekyler (momentant!) kan ha väsentligt lägre eller högre hastigheter än medelvärdet.
  • Slumpen gör att en enskild partikel kan träffas ”hårdare” på ena sidan, antingen av molekyler med högre hastighet och/eller att fler knuffar i en riktning.
  • De matematiska förklaringarna är oerhört mycket mer komplicerade än detta.

Effekten blir att de små partiklarna ständigt är i rörelse även om det krävs mikroskop för att alls märka det. Dessa rörelser var ett av de avgörande observationerna som, när den kunde förklaras, lade grunden till att den moderna atomteorin.

*) 1 nanometer, nm, är 10-9 meter = 0,000 000 001 meter, 1 mikrometer (µm) är 10-6 meter = 0,000 001 meter.

I jämförelse: ”Huvudhårens tjocklek är genomsnittligt 60 µm och upp till 100 µm…” Källa: Karolinska Institutet

Företrädare för användning av silverprodukter argumenterar ivrigt för att det är ofarligt, ett förståeligt angreppssätt, dessutom lätt att genomföra. Här ett exempel:

Gör vi ett snabbt räkneexempel på hur 10 ml 10 ppm starkt kolloidalt silver späs med blod (ca 5 liter hos en vuxen) enbart så får vi:

5 liter = 5000 ml = 500 gånger mer än 10 ml. Detta motsvarar 500 gångers utspädningseffekt enbart i blodet. Det gör att delar vi 10 ppm med 500 då får vi en blodkoncentration motsvarande 0.02 ppm. Hela kroppsvikten på säg 70 kilo motsvarar grovt räknat 70.000 ml. Slår vi ut utspädningseffekten på hela kroppen talar vi om koncentrationer om 0.001 ppm.

Detta ger som resultat att Ionosil – som inte ens i koncentrationer om 1 ppm under 48 timmar visar på skadliga effekter – i realiteten bara ackumuleras i kroppens celler i koncentrationer om bråkdelar av ppm under kanske några minuter. Kroppen omsätter silvret relativt snabbt och man har sett att silverjonerna rensas ut relativt snabbt via både njurar och lever. 90-99% är utrensat redan någon dag efter själva intaget.

Källa: http://www.ion-silver.com/allt.om.silver.html, ungefär 1/4 ner på sidan, sök efter ”utspädningseffekten”.

Givet antagandet att silvret tas upp momentant och allt hamnar i blodomloppet så stämmer det att blodkoncentrationen inte kan överstiga 0,02 ppm*. Låt oss minnas den siffran för framtida bruk.

Å andra sidan länkar samma sajt till en eliminationsstudie av Roger Altman:

I fallet med ett elektrokolloidalt silver så finns det en elimineringsstudie utförd av en man vid namn Roger Altman. Han har i en studie mätt upp intaget av silver och även mätt elemineringen via både avföring och urin. Enligt hans mätningar stannar inget kvar i kroppen.

Källa: http://www.silver-colloids.com/Papers/AltmanStudy.PDF

altman_silvergrafAltman har en graf som skall illustrera eliminationen av silver ur kroppen. Av upphovsrättsskäl avstår jag från att kopiera in bilden och väljer att rita av den istället. Följ länken om du vill se originalet.

Lägg märke till att Altman menar att 50% eliminerats efter 20 dagar och allt är borta inom knappt 100 dagar. Om det senare stämmer, varifrån kommer då argyri?

 

Roger Altman noterade att ju större intagsmängderna var, desto mer ökade kroppen utsöndringstakten. Inget silver verkade lagras upp i vävnaden utan kroppen såg effektivt till att utsöndra överflödigt silver. I ljuset av detta så kan man flytta fram LOAEL och NOAEL rejält, förmodligen motsvarande tusentals år. Intressant att notera är att ju mindre silver kroppen har upplagrat, desto långsammare gör sig kroppen av med det – ett tecken på att kroppen vet att den behöver spara lite grann till olika biokemiska ändamål.

Källa: http://www.ion-silver.com/allt.om.silver.html,   sök ”Altman”

Vilken av uppgifterna tror du på?

  1. 90-99% borta inom ett dygn eller
  2. 50% borta efter 20 dygn, allt inom 100 dygn eller
  3. Något annat

Differensen är så stor att åtminstone ett av de två första alternativen är mer fel än det andra.

Detta är ett riktigt krystat argument:

Intressant att notera är att ju mindre silver kroppen har upplagrat, desto långsammare gör sig kroppen av med det – ett tecken på att kroppen vet att den behöver spara lite grann till olika biokemiska ändamål.

Inte märkvärdigare än att det går snabbare i början när du tömmer ett badkar än mot slutet. Och sista mikroslatten rinner inte ut överhuvudtaget, det dunstar bort.

Silver förekommer i vår mat och kan spåras i kroppen men det är inte liktydigt med att det är nödvändigt. Silver är inte essentiellt för människor och ingår inte signifikant i något för våra organ, vävnader, hormoner eller enzymer betydelsefullt biokemiskt ändamål.

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?

Fortsättning följer.


*) ppm betyder parts per million (av lösningsmedlet). En illustration av hur litet 10 ppm är: Säg att Sveriges befolkning är 10 miljoner människor, 10 ppm av dessa skulle då innebära 100 personer, så många som ryms i två bussar. 0,02 ppm motsvarar 1/5 person.

silverDebatter om silver som del i sjukdomsbehandling polariseras ofta i diskussioner om hur ofarligt det är (vilket är sant!) och hur farligt/dödande effektivt det är (vilket också är sant). Detta förefaller som en paradox (motsägelse) men har en enkel och logisk bakgrund.

 

Vad gör ett ämne ”farligt”?

  1. Det måste komma in i kroppen.
  2. Mängden/koncentrationen måste vara tillräcklig, antingen för ögonblicket eller över längre tid.
  3. Det har negativ inverkanmatsmältningens kemi, kroppens vävnader/celler och/eller deras samspel.

Punkt 1 är lurigare än den verkar. Bara för att du stoppar något i munnen och sväljer det kan det likaväl inte sägas vara ”inne i kroppen”. Strängt taget är mun/hals/magsäck/tarm en yta mot omvärlden, visserligen med mängder av kemiska processer på G. Först när något finns i en form som kan absorberas genom vävnader och det sker så hamnar det ”i kroppen”. Sväljer du en liten kula ädelmetall, t.ex. guld eller silver, så lär inte mycket hända förrän det kanske klingar i porslinet någon dag senare.

Som du såg i del 1 karakteriseras merparten av grundämnenas kemiska (och fysiska) egenskaper av sitt yttersta elektronskal, vare sig det är i grundformen eller joniserat. I stora drag reagerar grundämnen som finns i samma kolumn i periodiska systemet efter liknande mönster även om de kan vara olika uttalade. Våra kroppar har system för att identifiera och eventuellt reagera på ämnen som vi kommer i kontakt med, om det så är via mag– och tarmkanalen, slemhinnor, lungor eller hud, våra ytor mot omgivningen. Att ha ätit/druckit något är inte synonymt med att det är inne i kroppen (enligt punkt 1 ovan) även om möjligheten att det kommer att ske ökar avsevärt.

I den ”kemiska skalan” karakteriseras alltså grundämnenas egenskaper av sina yttersta elektronskal samt hur ”tajta” de är. Av grundämnen, mineraler, som våra kroppar behöver är det tre, natrium (Na), kalium (K) och koppar (Cu) som har 1 elektron i yttersta skalet och på så vis påminner om silveratomer. Andra skillnader som massa och fysisk storlek** är av avgörande betydelse.

Ämnen som vår kropp eller dess kemi bortser från och/eller inte tar upp gör inget större intryck på oss, de passerar inte in i kroppen i större mängd och gör därför varken bu eller bä. Metalliskt silver är ett sådant ämne, vi har inga kanaler för att aktivt hantera silverpartiklar eller silveratomer, inte heller system för att göra oss kvitt det som råkar slinka med in. I litteratur och broschyrer som marknadsför silverprodukter framhålls ofta att 99% av silvret tämligen omgående passerar genom kroppen och ut.

Sett ur den synvinkeln är det rimligt att betrakta silver som harmlöst, givet att man håller sig inom de doseringsgränser som officiellt rekommenderas.

Vad gör ett ämne användbart/effektivt?

  1. Det ska nå den plats där det skall verka.
  2. Det ska göra sitt jobb.
  3. Det ska nå och bibehålla tillräcklig koncentration under tillräckligt lång tid.
  4. Det ska inte skada, i vart fall mindre än den gör nytta.

För att nå fram till och verka i målvävnaden måste det, målinriktat eller slumpmässigt, transporteras i tillräcklig mängd utan att ignoreras eller sorteras undan på vägen. I flertalet resonemang om silvrets säkerhet framhålls att 90 – 99% av det man äter/dricker inom kort passerar utan att tas upp så lär det vara svårt att nå vare sig den avsedda vävnaden eller verksam koncentration. Omvänt resonerat; man kan behöva konsumera ungefär 100 gånger eller mer silver än det beräknade behovet för att nå verksam nivå inne i vävnader under tillräckligt lång tid.

  • Vanligen är passagetiden från mun till toalettstol i storleksordningen ett dygn.
  • Att så lite silver tas upp måste rimligen tolkas som att det inte finns några riktade upptags- eller transportmekanismer i våra kroppar.

En kosmetisk nackdel hos några få storkonsumenter är argyri där silver når ut i huden och vid påverkan av ljus*** mörknar/svartnar till stabila oladdade kluster av silveratomer och/eller bildar mörk silversulfid (Ag2S) vid kontakt med svavel i proteiner, andra alternativ kan finnas. Det finns ingen anledning att tro att silver enbart samlas i huden, förmodligen uppträder det i överallt i kroppens vävnader där det kan nå fram, inte alltid i synlig form.

Argyri är permanent och försvinner ej ens efter lång tid. Det visar att det inte finns någon egentlig borttransport av silver. Det bör påpekas att argyri inte anses vara hälsofarligt då silver i den oladdade formen är inaktivt, ädelmetall som det är. Silversulfidens löslighet i vatten är extremt låg, 6,21·10−15 g/L vid 25 °C och lär heller inte påverka.

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi

Fortsättning följer


*) En jon är ett grundämne eller en molekyl med ett över- eller underskott av en eller flera elektroner, vanligen i en lösning och utbalanserat av motsvarande mängd laddningar av motsatt polaritet. De positivt laddade kallas katjoner, de negativa anjoner. De behöver inte vara lika många, bara att antalet laddningar är lika.

En jon känner inte sitt ursprung och låter sig ”utbalanseras”, alternativt bilda en förening, med andra. Grundregeln är att det bildade ämnet, vid spontan reaktion, har lägre energinivå än dess enskilda delar.

**) Ag (Massa 108, atomdiameter 165 picometer), Na (23, 190), K (39, 243 ) och Cu (63,5, 145)

***) När fotoner (ljusstrålning) träffar en lösning med silverjoner (Ag+) rör de om i grytan och kan knuffa över en elektron från en negativ jon i närheten till silvret som då övergår till att bli en oladdad atom. När det sker i tillräcklig omfattning börjar de bli synliga för blotta ögat som en mörk missfärgning.

Se även fotnot i tidigare inlägg om fotokromatiska glasögon.

Periodiska systemet silver

I periodiska systemet ordnas grundämnen efter egenskaper som atomkärnans antal positiva protoner, oladdade neutroner samt hur de negativt laddade elektronerna är fördelade. Man kan ordna ämnena i följd från en proton + elektron (väte) och uppåt i steg om 1. Bilden till vänster visar ett litet utsnitt runt Ag (Argentum, silver).

  • Uppe till vänster i varje ruta finns atomnumret, ett heltal som anger antal protoner i kärnan.
  • Nere till vänster finns en betydligt större siffra med flera decimaler, atomvikten, som visar medelantalet protoner + neutroner per atom i en ”naturlig” bit av ett ämne. Silver kan förekomma i flera varianter, isotoper, där skillnaden beror av antalet neutroner i kärnan.
  • Uppe till höger ser du en kolumn vars summa, för ett kemiskt inaktivt grundämne, alltid blir densamma som atomnumret och visar antalet elektroner i varje ”skal”, ordnade från det innersta och utåt efter stränga regler. Kemister och fysiker använder hellre ordet orbital som bättre motsvarar den sannolikhetsfunktion som beskriver elektronens ”handlingsutrymme”.
  • Elektroner i de yttre skalen, främst det yttersta (valensskalet) samt hur ”tight” skalen (orbitalerna) är ordnade runt kärnan avgör ämnets fysiska och kemiska egenskaper. Allt vi ser och känner omkring oss beror på dessa elektronskal. Om du rör vid något är det de yttersta elektronerna i din hud som interagerar med de yttersta elektronerna i det du berör, atomkärnorna är aldrig inblandade oavsett hur hårt du greppar, med händer eller verktyg.

Om du har en ring på ditt finger så är det bara dess elektroner du ser och känner. För att se ringen måste det finnas något ljus och några av dess fotoner kommer att ha precis den mängd energi som krävs för att knuffa en elektron upp ur sin bana, den exciteras. När den åter faller ned igen ger den sitt bidrag till den färg vi associerar till föremålet. Naturen tolererar inga tomma platser i de inre orbitalerna och det är därför osannolikt att en elektron som fotonen exciterade återvänder till samma plats innanför det yttersta. Allt detta fixande och trixande  kan observeras och mätas i ett spektroskop.

I ett komplett periodiskt system kan vi notera att ämnen som finns i samma kolumn har ganska lika egenskaper. Det som avgör är om de har samma antal elektroner i yttersta skalet (eller näst intill, i kolumnerna 5, 6, 8, 9 och 10 finns avvikelser).  I bilden ovan kan vi konstatera att alla tre metallerna, koppar, silver och guld, är förhållandevis mjuka och beständiga mot korrosion. De är de enda metaller man kan finna i ren form i naturen, föremål av guld och silver är några av de äldsta fynden av bearbetade metaller som återfunnits. Vanligen uppträder metaller i kemisk bindning till andra ämnen som t.ex. syre.

Metalliskt silver är mycket stabilt som inte vare sig påverkar eller låter sig påverkas påtagligt under normalt förekommande omständigheter. Under 1800-talet började man utnyttja att silver i jonform har rejält annorlunda egenskaper än som metall. Vad är då joner?

  • De stabilaste grundämnena, ädelgaserna, har alla ett yttersta elektronskal som har 8 elektroner, det räknas som ”fyllt”.
  • Genom att studera det periodiska systemet finner vi att natrium (Na) endast har en elektron i yttersta skalet och av det skälet är kemiskt mycket reaktivt. Även Klor (Cl) är kemiskt mycket aktivt, men här beror det på att yttersta orbitalen (”skalet”) innehåller 7 elektroner, en mindre än ”idealet”.
  • Dessa två kan bilda vanligt salt, NaCl. I torr form är saltkristallerna extremt stabila, men i vatten faller de lätt isär (1 liter vatten löser mer än 3 hg salt) och ”i positiv samverkan” kommer natriumatomen att avstå den ensamma yttersta valenselektronen till kloratomen som i sin tur saknat en. Båda atomerna har nu fyllda yttersta elektronskal och är stabila om än elektriskt laddade joner. Bland vattenmolekylerna finns nu positivt laddade natriumjoner och negativt laddade klorjoner, båda med kompletta ytterskal*. Lösningen som helhet är elektriskt neutral, men nere på mikronivå är det elektriskt laddade joner som tillåter att man kan leda elektricitet genom saltat vatten (men inte olja).
  • De lösta jonerna har inte längre någon bindning till sin ”partner” i den ursprungliga kristallen, de ”dansar” lika gärna med en ny, givet att den har motsatt laddning. Det behöver inte innebära att den nya partnern är en jon, det kan mycket väl räcka med en lokal laddningsasymmetri i en godtycklig molekyl.
  • Ett av Jordytans vanligaste ämnen och mer än 2/3 av en människas vikt är vatten (H2O). Det har en laddningsasymmetri, det är polärt. (https://matfrisk.com/2015/05/19/kemi-02-vatten-en-popular-molekyl/)
  • Proteiner får och bibehåller sin komplicerade form genom ömsesidig elektrisk attraktion mellan olika delar av sina beståndsdelar. Ett protein är elektriskt neutralt, men på ytan finns mängder av lokala laddningar som mycket väl kan och kommer att interagera med omgivningen.

Metalliskt silver är alltså begränsat kemiskt aktivt, det kallas ju ädelmetall av den anledningen. Men i samverkan med atomer i en helt annan kolumn (# 17) som har plats för en elektron i yttersta skalet (fluor, klor, brom och jod) kan silvret bilda joner. Dessa kallas silverhalider och är grunden till fotografins kemi. Breder man i mörker en sådan blandning av silver i jonform på ett genomskinligt underlag så har vi fotografisk film, stabil till dess den träffas av strålning, fotoner. Exponeringen är första steget i en lång process som resulterar i att den i grunden glänsande metallen silver ger svärta till den negativa bilden på filmen.

I kemin finns i praktiken en gråzon mellan vad som händer och inte händer. Även det mindre sannolika, att metalliskt silver ska reagera med något i sin omgivning, inträffar då och då. Det är därför man inte kan polera silverbestick och tro att det kommer att glänsa under lång tid ens om man avstår från att använda det. Det reagerar med svavel från mat och fingrar (proteiner!) eller till och med luften och bildar ett lager av mörk silversulfid, Ag2S. Detta har ytterst låg löslighet i vatten (6,21·10−15 g/L vid 25 °C) och kan därför inte diskas rena. Om silversulfid bildas i kroppens vävnader så blir det kvar där för resten av livet, inga förmenta detoxkurer kan göra något åt det.

Det är enbart vid ytan på silvret som sådana reaktioner sker och ökar man den radikalt som t.ex. att finfördela silvret till oerhört små partiklar, äkta kolloidalt silver, så ökar chansen/risken att även en ädelmetall som silver utan särskild provokation reagerar med omgivningen.

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Fortsättning följer


Överskottsinfo: Silverklorid (AgCl) kan användas i fotokromatiska glasögon, sådana som mörknar i ljus. Där är det ljusets UV-strålar (UV-fotoner har högre energi än synligt ljus) som gör att förhållandevis genomskinlig silverklorid tillfälligt spjälkas till klor och mörka silverpartiklar. Effekten ökar av värme.

*) Oktettregeln bygger på att alla riktigt stabila grundämnen (ädelgaserna) har precis 8 elektroner i yttersta skalet. I jonform samarbetar grundämnen genom att avge och ta upp elektroner för att i samverkan uppnå detta kemins Nirvana.

Salt i maten

Publicerat: 2016-05-21 i Blodtryck, Hjärtsjukdom, Kemi, Kort om studier, Salt
Etiketter:, , ,

TextTv - Salt1

När natriumklorid, bordssalt, löser sig i vatten delar det upp sig i elektriskt laddade joner. Positivt laddade natriumatomer (Na+) och negativa kloratomer (Cl-), som fördelar sig mellan vattenmolekylerna. De positiva natriumjonerna drar sig gärna mot den lätt negativa ”polen” hos vattnet, syreatomen. De negativa klorjonerna håller sig nära någon av de något positiva väteändarna i vattenmolekyler. NaCl i torr form är inte molekyler i vanlig bemärkelse utan enskilda atomer i en kristallstruktur. Vi må stoppa in saltkristaller mellan läpparna, men så snart de löses i vatten blir de joner.

Mer om vattnets kemi.

Se även SvT NyheterIngen fördel med lite salt i maten:

”Stick i stäv med den allmänna uppfattningen finns det inga hälsomässiga fördelar med att äta lite salt. Inte ens för människor med högt blodtryck. Tvärtom, visar forskning. 

Studien, som presenteras i tidskriften The Lancet, visar att personer som äter lite salt (mindre än tre gram per dag) löper högre risk att drabbas av hjärtinfarkt, stroke och död, jämfört med dem som äter normala mängder (5—6 gram per dag). Inte ens personer med högt blodtryck har nytta av att äta lite salt. Tvärtom.”

Studien bakom ”nyheten” finns att läsa i The Lancet för den som har lust att lägga 31.50 dollar. Jag nöjer mig med gratisinfon nedan.

Background

Several studies reported a U-shaped association between urinary sodium excretion and cardiovascular disease events and mortality. Whether these associations vary between those individuals with and without hypertension is uncertain. We aimed to explore whether the association between sodium intake and cardiovascular disease events and all-cause mortality is modified by hypertension status.

Min tolkning: Ett antal studier visar en u-formad association mellan natrium i urinen och hjärt- och kärlsjukdom och död. Det innebär att både låga och höga halter av salt kopplas till risker.

Methods

In this pooled analysis, we studied 133 118 individuals (63 559 with hypertension and 69 559 without hypertension), median age of 55 years (IQR 45–63), from 49 countries in four large prospective studies and estimated 24-h urinary sodium excretion (as group-level measure of intake). We related this to the composite outcome of death and major cardiovascular disease events over a median of 4·2 years (IQR 3·0–5·0) and blood pressure.

Min tolkning: 133 118 personer i åldersintervallet 45-63 år från 49 länder lämnade dygnsurin. Detta inklusive blodtryck jämfördes med död och större hjärt- och kärlhändelser under 3-5 år (median: 4.2 år)

Findings

Increased sodium intake was associated with greater increases in systolic blood pressure in individuals with hypertension (2·08 mm Hg change per g sodium increase) compared with individuals without hypertension (1·22 mm Hg change per g; pinteraction<0·0001). In those individuals with hypertension (6835 events), sodium excretion of 7 g/day or more (7060 [11%] of population with hypertension: hazard ratio [HR] 1·23 [95% CI 1·11–1·37]; p<0·0001) and less than 3 g/day (7006 [11%] of population with hypertension: 1·34 [1·23–1·47]; p<0·0001) were both associated with increased risk compared with sodium excretion of 4–5 g/day (reference 25% of the population with hypertension). In those individuals without hypertension (3021 events), compared with 4–5 g/day (18 508 [27%] of the population without hypertension), higher sodium excretion was not associated with risk of the primary composite outcome (≥7 g/day in 6271 [9%] of the population without hypertension; HR 0·90 [95% CI 0·76–1·08]; p=0·2547), whereas an excretion of less than 3 g/day was associated with a significantly increased risk (7547 [11%] of the population without hypertension; HR 1·26 [95% CI 1·10–1·45]; p=0·0009).

Min tolkning: Mer natrium ger högre blodtryck, särskilt hos de med högre blodtryck. Föga förvånande då salt är hygroskopiskt, vattensugande. I gruppen utan förhöjt blodtryck steg risker tydligt med låg saltkonsumtion, under 3 g/dag.

Interpretation

Compared with moderate sodium intake, high sodium intake is associated with an increased risk of cardiovascular events and death in hypertensive populations (no association in normotensive population), while the association of low sodium intake with increased risk of cardiovascular events and death is observed in those with or without hypertension. These data suggest that lowering sodium intake is best targeted at populations with hypertension who consume high sodium diets.

Min tolkning: Förhöjd saltkonsumtion ökar risker för de med högt blodtryck medan låg saltkonsumtion ger högre risk oavsett blodtryck.

Funding

Full funding sources listed at end of paper (see Acknowledgments).

Min tolkning: Man måste betala 31.50 dollar för att få veta vilkas sanningar det är.*

Många hävdar att mineralsalter av diverse slag är så mycket bättre än vanligt vitt salt, men det har i så fall inget med ”saltdelen” att göra. Oavsett ursprung blir saltet joner i vattenlösning enligt det jag beskrev i inledningen. Om det följer med andra mineraler vi behöver är det en bonus, men sannolikt en man betalar dyrt för. Å andra sidan finns det många som köper flaskvatten för 5000-10000 kronor/kubikmeter medan vattnet i kranen kostar kanske 25 kronor/kubikmeter.

Tro kan öppna plånböcker och omfördela pengar till nya ägare.


*) Det visar sig vanligen att utfallen av studier inom nutrition och ”läkemedel” följer beställarens/finansiärens önskemål. Ungefär som valresultat i en diktatur.

Kemi i en cell

Publicerat: 2016-05-12 i Kemi, Vetenskap
Etiketter:, ,

Metabolism Chart

Detta är en karta över kemin i en cell så som den var känd 1987. Antag att någon väljer att gå in i den och peta, hur sannolikt är det att bara ”rätt” saker påverkas? Klicka på kartan så ser du den i större skala i en ny flik.

Statiner verkar genom att hämma enzymet HMG-CoA reduktas, som är det hastighetsbegränsande steget i kroppens nybildning av kolesterol.

Från rad E och neråt samt kolumn 9 och till höger finns de reaktioner som inte fungerar fullt ut för statinbehandlade. Vid G11 finns Mevalonat och strax till vänster finns platsen där HMG-CoA reduktas verkar. Följer du pilarna efter den platsen ser du allt som påverkas, bland dem 7-Dehydroxycholesterol, en råvara för bildning av D-vitamin. Från Cholesterol (G/F12) leder pilarna vidare mot östrogen, testosteron och andra steroidhormoner. Kortisol/kortison ligger också nedströms kolesterol och påverkas också, bra eller dåligt beror på omständigheterna.

Varje gång du ser att forskare nämner att deras forskning förväntas leda till mediciner mot både det ena och det andra så minns denna karta som säkert utvecklats ytterligare sedan den ritades.

”Försurad kropp?”

Publicerat: 2016-03-30 i ATP, Kemi, Mitokondrier
Etiketter:, , ,

Ett av de mest välreglerade systemen i kroppen är blodets pH-värde. Det ligger hos friska i ett snävt område med cirka 0.1 pH-enheters variation. pH är ”negativa tio-logaritmen av hydroniumjonkoncentrationen i en lösning”, neutralt när pH = 7, surt därunder och basisk/alkaliskt däröver. I vardagliga sammanhang räcker skalan från 0 – 14 för att beteckna de flesta förekommande värden.

Blodets pH ligger i trakten av 7.3 – 7.4, vilket innebär att koncentrationen av de surgörande vätejonerna är cirka hälften jämfört med en neutral lösning.

Det mest extrema pH hos människan finns i de organ, parietalceller (1), som producerar magsäckens saltsyra. Med hjälp av en energikrävande protonpump höjs den syrabildande jonkoncentrationen från blodets nära neutrala nivå till pH = 0.8, i storleksordningen 3000000 (3 miljoner) gånger! Råmaterial för denna process är salt, vatten och koldioxid. För att balansera processen kommer samtidigt alkaliskt bikarbonat att utsöndras i blodomloppet och höjer dess pH, på engelska kallas det ”alkaline tide”(2), en ”alkalisk/basisk våg”. Detta bikarbonat är lätt alkaliskt, och ur kemisk synvinkel motbalanserar det syrabildningen.

När den oerhört koncentrerade saltsyran hamnar i magsäcken späds den ut till ett pH i intervallet 2 till 3, vilket innebär att koncentrationen minskar till cirka 1/50.

En av magsyrans uppgifter är att döda oönskade bakterier och andra organismer som vi äter men även bearbeta födans innehåll av proteiner. Dessa är stora, sammansatta av minst 50 och upp till 27000 aminosyror, sammanrullade som nystan. I den ytterst sura miljön kommer de att rätas ut, denatureras, och utsätts för enzymet pepsin. Pepsinet bryter upp peptidbindningarna så att de olika aminosyrorna frigörs från varandra.

Experiment: Stek några skivor bacon så att de ligger intill varandra. Där muskelkött vidrör varandra eller fett (i mindre utsträckning) kommer bitarna att fastna samman. Det beror på att proteinnystanen har luckrats upp och trasslar in sig i grannen. Detta är värmeinducerad denaturering som gör att magsyran får ett lättare jobb.

Magsyrans koncentration är väl anpassad till foderstaten. En animalieätare med snabb maggenomströmning som ex. hunden har ett pH i paritet med människan medan idisslare med flera och stora magar klarar sig med en betydligt vekare blandning. Vår potenta magsyra visar att vi inte är anpassade till vegankost.

Faktorer som påverkar syraproduktionen är t.ex. hur mycket, främst protein, vi äter och hur mycket vätska vi dricker. Däremot har födans/dryckens pH tämligen begränsad inverkan, spädningseffekten dominerar. Ju mer vi dricker och späder ut magsyran desto mer måste protonpumpen arbeta för att återställa magsyran, bikarbonaterna som samtidigt bildas hamnar i blodet för vidare transport och dess pH stiger.

När magsäcken efter utfört arbete portionerar ut sitt innehåll via nedre magmunnen till tolvfingertarmen neutraliseras blandningen med den tidigare insamlade bikarbonaten och producerar återigen vanligt salt, vatten och koldioxid som transporteras vidare via blodet, samt utsöndras via urinen och lungorna.

Experiment: När vi andas ut koldioxid löser sig en mindre del i munnens vätska och bildar lätt sur kolsyra. Med lämpliga reagenspapper kan man då upptäcka att kraftig ansträngning och motsvarande förhöjda ämnesomsättning sänker salivens pH.

Det är alltså helt logiskt och normalt att både urinens och salivens pH varierar något för att kompensera för de miljonfaldiga skillnaderna inne i kroppen!


(1) Parietalceller är kroppens mest energikrävande. Deras innehåll av mitokondrier (cellens ”kraftverk”) är inte mindre än 35%, högre än för någon annan celltyp.

(2) En ännu kraftigare form av ”alkaline tide” som leder till plötslig pH-höjning i blodet uppkommer vid kräkning. Då minskar magsäckens innehåll av magsyra mycket dramatiskt och måste ersättas omgående vilket ger en kraftig produktion av bikarbonat som höjer blodets pH, i svårare fall till direkt farliga nivåer.

Ketoner är ämnen där en syreatom är dubbelbunden till en kolatom mellan två andra grupper, här R och R’imgresDen näringsmässigt mest betydelsefulla ketonen är beta-hydroxybutyrat, faktiskt inte en ”renlärig” keton. Namnet låter skrämmande men det är bara internationellt förståelig ”kemiska”.

  • Beta– berättar var det speciella hos ett ämne är beläget.
  • Hydroxy– beskriver en liten grupp atomer som består av en syre- och en väteatom, en OH-grupp.
  • Butyrat visar att det gäller en kolkedja med fyra kol.

Sätt nu samman denna information på samma sätt som vi bygger upp en ekvation ur dess delar. Vi får då en kort kolkedja som skiljer sig från fettsyran n-butansyra (4 kol, smörsyra, bilden nedan) genom att en väteatom invid den andra kolatomen i kedjan (räknat från metyländen, den ”feta” änden) ersätts med en OH-grupp.

N-butansyra

Detta resulterar i beta-hydroxybutyrat, märk den lilla skillnaden mot förra bilden.

Beta-hydroxybutyrat_2

Kort– och medellånga fettsyror har utomordentligt fördelaktiga hälsoegenskaper, de kan bland mycket annat minska eller eliminera epileptiska anfall och dramatiskt förbättra vissa typer av demens. Framförallt korta fettsyror är lösliga i blodet och kan transporteras dit där de behövs, med ett undantag, hjärnan. Där finns blod-hjärnbarriären för att skydda hjärnan och den sätter stopp för fettsyror.

Men den extra OH-gruppen hos beta-hydroxybutyrat förändrar allt. OH-grupper är speciella såtillvida att det endast saknas en väteatom för att bygga en vattenmolekyl, OH-grupper ”umgås” därför gärna med vatten, ju fler OH desto lättare. Beta-hydroxybutyrat har två sådana hydrofila (vattenälskande) grupper och den lilla förändringen gör att ketonen med största lätthet följer blodet vart som helst i kroppen, även genom blod-hjärnbarriären! En av fördelarna hos beta-hydroxybutyrat är att den är nästan lika energität som motsvarande fettsyra utan att, räknat per energi, dra med sig lika mycket syre som glukos.

Med tanke på dessa goda egenskaper finns ingen anledning att ifrågasätta ketoner/ketos? Med ett undantag!

Våra kroppar behöver energigivande råvaror där hormonerna insulin och glukagon i samarbete fungerar som ”trafikvakter” och förser blodet med energi från såväl mat som redan befintliga lager av energi i kroppens vävnader. Hos personer med kraftigt nedsatt eller obefintlig insulinproduktion fungerar inte denna styrning, glukagonet tar överhanden och aktiverar glukosfrisättning och fettmetabolism inklusive ketonproduktion.

Diabetes typ 1 (kraftigt nedsatt eller obefintlig insulinproduktion) är alltså i grunden en dysfunktion (bristande funktion) i fettmetabolismen till skillnad från diabetes typ 2 (”sockersjuka”, åldersdiabetes) där insulin inte får den önskade effekten på upptag av glukos, blodsocker.

Om och när diabetiker typ 1 tappar kontrollen över glukagonproduktionen ökar frisättning av glukos såväl som fria fettsyror och ketoner. Beta-hydroxybutyrat har en karboxylände (COOH) som ger ämnet svagt sura egenskaper vilket i alla ”normala” sammanhang (ketos) saknar betydelse men hos diabetiker typ 1 med nedsatt förmåga att reglera fördelningen av energiråvaror i blodet kan skapa problem i form av DKA, diabetisk ketoacidos.

Insulin har många funktioner i kroppen, men två av dem är särskilt betydelsefulla i detta sammanhang, glukagonstyrning i bukspottkörteln och glukosupptag från blodet.

Varje gång en insulinmolekyl når insulinreceptorn på en mottagarcell ”fastnar” den och dras in i cellen. Det betyder att ju mer glukos vi äter desto mer insulin kommer att förbrukas (dras in i målceller) och påverkar därmed inte glukagonproduktion/frisättning.* Att öka mängden insulin för att försöka uppnå en slags säkerhetsmarginal mot ketoacidos är dömt att misslyckas då man som kompensation, för att inte hamna i insulinkoma, måste öka mängden glukogena delar av maten. Om man gör det kommer en betydande del av insulinet att förbrukas för att hålla blodsockret under kontroll utan att påverka glukagonet och så löper det vidare.

Mer glukos (kolhydrater) i maten kräver mer insulin, det som ”blir över” styr glukagonet.

Min hypotes är att de som injicerar insulin bör ”grunda” med ett långtidsverkande alternativ för att undvika att helt förlora kontrollen över glukagonet. Detta även om man använder insulinpump med snabbverkande insulin då det inte är helt ovanligt med böjda slangar och lossnade infusionsset.

Kroppens funktioner är dynamiskt beroende av varandra och alla statiska resonemang är dömda att fallera i det långa loppet.


Beskrivningen ovan är inte fullständig, fler samband finns men i sammanhanget har de liten betydelse.

*) Detta resonemang gäller för diabetiker som huvudsakligen injicerar insulin. För ”friska” reglerar det egna insulinet glukagonproduktionen direkt i de Langerhanska öarna. Den blir därför mycket mer exakt och därför är det värdefullt att ha en egen produktion, om än liten.

 

Preem

Källa: Svar från Preem angående deras lågkostnadskabanoss. (Video)

Min fråga till Preem:

Hej Preem

Ni har sänkt kötthalten i er kabanoss för att rädda miljön. Omräknat i bensin, hur mycket innebär fördelen av en sådan förbättrad kabanoss?

Mvh / Erik Edlund, Umeå
Email: erik.matfrisk@gmail.com

Jag fick följande svar:

Hej Erik!

Vi arbetar ständigt för att göra förbättringar och mer klimatsmarta och hållbara produkter. Vi har inga omräknade siffror på detta men vi ser att varje produkt och liten förändring vi tar fram är ett steg mot en mer hållbar värld, allt ifrån drivmedel till korv. Alla produkter är under en ständig utvärderingsprocess där vi tittar på hur vi kan förbättra produkterna för en bättre värld.

I den nya kabanossen har vi minskat kötthalten med 50% genom att ta bort allt nötkött för att ersätta det delvis med fläskkött, men främst med härligheter som chiafrön och morötter. På så vis ser vi att vi skapat en korv som både vår planet och våra kunder mår bättre av. Vid de smaktester vi genomfört så tycker man att den nya korven smakar lika gott eller godare som den tidigare med högre kötthalt.

Varmt välkommen in i någon av våra butiker och prova!

Med vänlig hälsning
XXXXXX
Affärstödteamet

Ett av landets storförsäljare av koldioxidutsläpp har gjort en PK satsning på en ”klimatsmart” kabanoss. Jag blir alldeles matt av mailskribentens entusiasm, man har ersatt nötkött: ”… främst med härligheter som chiafrön och morötter.”. Jag tvivlar starkt på att man gjort dubbelblinda smaktester med långtradarchaufförer.

  1. Hur ser innehållsförteckningen ut för den nya produkten, gärna även den gamla?
  2. Hur påverkas prisbilden till kund av det nya lågprisinnehållet?

Jag har förståelse för att personal på Affärsstödteamet inte utbildas i kolkemi eller kolkretsloppet, därför ska jag kort rekapitulera lite av det.

Politisk korrekthet kräver numera att man skyller regn, rusk, stormar och värme på av människan förorsakade utsläpp av ”växthusgaser”. Till dessa räknas koldioxid (CO2), metan (CH4) samt den överlägset effektivaste av dem alla, vatten i form av ånga (H2O). Lägg märke till att endast tre atomer förekommer, väte, syre och kol, alla tre förutsättningar för liv som vi känner det. (Länk)

Det är komplett omöjligt att påverka hur mycket syre och väte som finns runt oss, den enda vi i någon mån påverkar är mängden kol som frisätts från miljontals år gamla fossila lager som kolgruvor och olja. När detta kol når jordens yta och atmosfär kommer det förr eller senare att hamna i den följd av kemiska reaktioner vi kallar liv.

Det politiskt korreka klimatalarmister och deras måttligt bildade följare inte inser är att utsläpp och omsättning är två skilda begrepp med bara måttlig överlappning.

Omsättningen är en förutsättning för liv och utsläppen sker från kolgruvor samt gas- och oljekällor.

Det blir så utomordentligt löjligt när Preem, vars existens bygger på kolutsläpp, gör ett sådant utspel.

Skämmes, tammef*n!

Man behöver inte vara synsk för att räkna ut reaktionerna, inte heller att Västerbottens-Kuriren lägger uppföljaren bakom en betalvägg.
Baconstopp VK betalvägg

En halvtaskig mobilbild av en nästan helsida:

Baconstopp helsida

Så en reaktion från etnologen Jonas EngmanNordiska Museet:

Baconstopp citat

Han må vara väl bevandrad i människors beteenden, men hans kemikunskaper är grunda. Politisk korrekthet kräver numera att man skyller regn, rusk, stormar och värme på av människan förorsakade utsläpp av ”växthusgaser”. Till dessa räknas koldioxid (CO2), metan (CH4) samt den överlägset effektivaste av dem alla, vatten i form av ånga (H2O). Lägg märke till att endast tre atomer förekommer, väte, syre och kol, alla tre förutsättningar för liv som vi känner det.

Det är komplett omöjligt att påverka hur mycket syre och väte som finns runt oss, den enda vi i någon mån påverkar är mängden kol som frisätts från miljontals år gamla fossila lager som kolgruvor och olja. När detta kol når jordens yta och atmosfär kommer det förr eller senare att hamna i den följd av kemiska reaktioner vi kallar liv.

Det politiskt korreka klimatalarmister och deras måttligt bildade följare inte inser är att utsläpp och omsättning är två skilda begrepp med bara måttlig överlappning.

Omsättningen är en förutsättning för liv och utsläppen sker från kolgruvor samt gas- och oljekällor. Norrmännen med sina ”miljövänliga” elbilar är/var, räknat per capita, första rangens kolutsläppare. Investeraren Petter Stordalen är norrman, i vad mån hans hotell- och fastighetsimperium finansieras av oljeintressen låter jag andra ta reda på.