Inlägg märkta ‘vetenskap’

Vi kan alltid skaffa oss mer kunskap och närma oss sanningen men om vi mot förmodan skulle nå fram till sanningen skulle vi ändå inte veta att vi gjort det.

Källa: Xenofanes*

img_2163

Låt säga att vi hypotetiskt samlar alla tänkbara och otänkbara påståenden inom ett naturvetenskapligt område. Ingen skulle väl bli förvånad om några av dem med tiden visar sig vara falska.

  • Några sanningar är självklara, som att ”vatten är alltid vått”, åtminstone för de som aldrig träffat på is och snö.

Det finns diffusa och besvärliga områden där ”sanningen” är svårfångad. Som Xenofanes påpekar så kan vi då aldrig veta när vi funnit sanningen i vårt sökande. Det bästa vi kan göra är att eliminera falska påståenden och det utgör i praktiken nästan allt av ”alla tänkbara uttalanden”.

  • I sträng mening kan vi aldrig ”bevisa” att ett påstående är sant, däremot är det möjligt att falsifiera det, visa om det är osant. Om vi efter bästa förmåga eliminerar falska påståenden återstår de där sanningen möjligen kan finnas. Fortsätter vi systematiskt att angripa dessa kan vi gradvis eliminera det falska och avgränsa var sanningar finns även om vi inte vet dess exakta belägenhet.

Vi lever i det som optimister kallar ett informationssamhälle. Internet erbjuder närmast obegränsade möjligheter att sprida såväl kunskap, åsikter, hugskott, ironi, humor som avsiktlig desinformation. Har vi förmåga att skilja mellan vad som är i stort sett sant och det som är falskt?

Alldeles säkert inte om vi tänker på allt vi möter varje dag. Däremot kan vi med tiden lära oss skilja mellan källor som är hyfsat pålitliga och de som inte är det. Hur många väsentliga påståenden möter du som är uppenbart sanna i förhållande till de som är av tveksam natur (om än inte visat falska)?

  • Ett test: Välj media i tidningsställ eller på nätet och botanisera bland dess rubriker. Välj de som kittlar ditt intresse och se vad som döljer sig där bakom. Motsvarar de rubrikerna eller känner du dig lurad? Och då har du ännu inte kontrollerat om artikeln som sådan är korrekt.

Inom dagens nutritionsforskning är det populärt med epidemiologi** med enstaka kostenkäter, mängder av deltagare och som pågår under lång tid. Utgångsparametern, kostenkäten, är oftast synnerligen bristfällig då den sträcker sig över kort tid i förhållande till undersökningens varaktighet, man förutsätter att personen svarar sanningsenligt och fortsätter att äta på samma sätt i 1-10-30 år. Felmarginalen är redan där så stor att den inte kan kompenseras ens av oändligt noggranna mätningar i övrigt. Lite ironiskt kallas det SISU, Skit in, skit ut.

För att de ofta mycket små skillnaderna i utfall alls ska märkas redovisas de sällan i absoluta värden utan som relativa tal, grupper emellan. Det kan innebära att i en undersökning med 10000 deltagare under 20 år där en viss händelse i en grupp sker 5 gånger och i en annan 10 gånger då är den senare en fördubbling men i helheten som en pink i havet. Sant men förledande och ingen ärlig redovisning.

Sådana undersökningar kan ge anledning att formulera och testa hypoteser på ett vetenskapligt sätt genom att seriöst utmana dem för att se om de tål försök till falsifiering. De ”forskare” som gör dem är vanligen omotiverat stolta över sina resultat, journalister och halvbildade ser dem som väsentliga bidrag till ackumulerat vetande och lekmän i största allmänhet tror att de redovisar sanningar.


*) Xenofanes föddes i Kolofon omkring år 570 f.Kr. Det är svårt att med bestämdhet slå fast tidpunkten med noggrannhet eftersom mycket runt Xenofanes är höljt i dunkel. Man vet att han som ung flydde till Sicilien, där han livnärde sig själv genom att vid domstolen i Hiero (antik stad nära Syrakusa) recitera elegiska och jambiska verser som han skrivit för att kritisera teogonin (läran om gudarnas uppkomst) över Hesiodos och Homeros

**) Epidemiologi är läran om sjukdomsförlopps demografi. Bland annat studeras epidemier och andra sjukdomar som är tillräckligt vanliga för att det ska vara möjligt att få ett statistiskt underlag. Därför handlar epidemiologi inte bara om smittsamma sjukdomar, utan också om till exempel diabetes, hjärtsjukdomar och högt blodtryck. (Wikipedia) Ett avgörande bidrag lämnades av Bradford Hill när han satte upp ett antal kriterier.

Potentially, SCFAs are absorbed by each intestinal segment, as demonstrated in animal models and human volunteers.

Min tolkning: SCFA (Kortkedjiga fettsyror) kan tas upp i varje del av tarmen, något som visats i djurmodeller och hos frivilliga försökspersoner

SCFA tas, till skillnad från de flesta andra näringsämnen, upp i både tunn- och tjocktarm. Provrörsstudier (in vitro) visat att koleratoxin som förorsakar akuta diarréer motverkas genom uppvätskning i kombination med resistent stärkelse*. Det senare är ett råmaterial som tjocktarmens bakterier använder för att producera små men betydelsefulla mängder av n-butyrat (smörsyra, SCFA).

Ett återkommande mantra som Livsmedelsverket upprepar gång på gång är ”Ät mindre salt!” De är naturligtvis inte ensamma om detta, men frågan är om deras uppmaningar är enbart till fördel.

  • Vi har många specialiserade öppningar i tarmväggarna för att kunna ta upp näringsämnen, en del arbetar passivt i den betydelsen att ämnen ”läcker” igenom från en högre till en lägre koncentration**. Andra ”lotsas” igenom tillsammans med ett annat ämne i en cotransporter. Dessa är transportproteiner (Ungefär rör genom cellväggar) där ett par olika ämnen/joner (laddade molekyler) samverkar för att ta sig igenom. Det ena följer sin koncentrationsgradient (från hög till en lägre koncentration) och det andra följer med ”på köpet”.

The colonocytes absorb butyrate and other SCFAs through different mechanisms of apical membrane SCFA uptake, including non-ionic diffusion, SCFA/HCO3 exchange, and active transport by SCFA transporters. The transport proteins involved are monocarboxylate transporter isoform 1 (MCT1), which is coupled to a transmembrane H+-gradient, and SLC5A8, which is Na+-coupled co-transporter.

Min tolkning: Butyrat och andra korta (mättade, märk väl!) fettsyror tas upp via diffusion, utbyte av SCFA och karbonat samt aktiva SCFA-transportörer … SLC5A8 som är en cotransportör med Na+.

Märk väl att Na+ är den ena jonen i natriumklorid, vanligt vitt salt!

Hur lite salt kan vi äta och fortfarande ta upp SCFA samt dra fördel av produktionen av korta fettsyror i tjocktarmen ur fibrer och resistent stärkelse?

Fortsättning följer.

Tidigare i ämnet: Nytta av korta fettsyror i tjocktarmen, del 1,   Korta fettsyror i tjocktarmen, del 2


*) Det kan alltså ligga något i den ordination min mor fick av en läkare på hembesök(?) när jag var liten i slutet av 40-talet, möjligen början av 50-talet. Hon skulle ge mig ett avkok av potatis. Ordinationen minns jag, också att den smakade rätt tråkigt. Om det verkade har jag glömt.

**) Koncentrationen kan syfta på såväl ämnenas koncentration som elektriska laddningspotentialer.

Recently, the Effect of Amount and Type of Dietary Carbohydrates on Risk for Cardiovascular Heart Disease and Diabetes Study (OmniCarb) trial reported that a low-GI diet did not improve insulin sensitivity. We conducted this ancillary study of the OmniCarb trial to determine the effects of GI and carbohydrate content on glucose homeostasis and inflammation.

Källa: Effect of type and amount of dietary carbohydrate on biomarkers of glucose homeostasis and C reactive protein in overweight or obese adults: results from the OmniCarb trial – Stephen P Juraschek et al – BMJ Open

Min tolkning: OmniCarb visade att låg-GI-kost inte förbättrar kroppens reaktion på insulin. Vi har utfört en avknoppningsstudie för att fastställa effekter av GI och kolhydratinnehåll på glukosreglering och inflammation.

Här kommer svaret i korthet:

lowering-carbs-better-than-low-gi

Syntolkning: Dessa resultat visar att fokus på att reducera kolhydratmängden i mat är en bättre strategi än låg-GI hos vuxna som tillhör riskgrupper för diabetes typ 2.

 

Studien utfördes på 163 överviktiga och feta. Under vardera 5 veckor med mellanliggande pauser* på vardera 2 veckor åt man de fyra olika kombinationerna av hög- och lågkolhydratkost samt hög- och lågGI.

  • Lågt GI innebar <= 45, högt >= 65.
  • Högt kolhydratinnehåll (HC) innebar 58E% medan lågt (LC) var 40E%

Deras LC är långt ifrån det man vanligen använder inom LCHF, men för enkelhets skull fortsätter jag att använda beteckningen. Reducerat kolhydratintag vore en mer relevant beskrivning. För att kompensera ökas fett från 27E% till 37E% samt protein från 16E% till 23E%.

Om vi antar att 16E% protein utgör en mängd som är tillräcklig för kroppens behov så innebär det att den ökade mängden (44% mer protein) används som energikälla. När detta sker kommer den överlägset mesta delen av detta att omvandlas till glukos, något till ketoner. Säg att 5 av de 7 energiprocenten från den högre proteinandelen, lågt räknat, blir glukos. Det innebär att i LC-kosten skall adderas 5E% till 45E%. Detta minskar skillnaden mellan HC och LC. Proteiner/aminosyror metaboliseras förhållandevis långsamt och deras effekt kan antas vara ”låg-GI”.

När det gäller fetter finns även där avsevärda skillnader. Man är uppenbarligen mycket fettskrämda vilket visar sig i att andelen mättade fettsyror bara ökar från 6E% till 7E%. Till saken hör att mättade fetter är ytterst stabila då de inte innehåller de oxidationsbenägna dubbelbindningarna mellan kolatomer.

Andelen enkelomättade fetter ökar från 12-13E% till 18-19E%. Enkelomättade fetter antas vara ”nyttiga” trots att de innehåller en dubbelbindning där oxidation, härskning, kan ske. Som jag ser det sker det i en skala som är förhållandevis oviktig.

Något som är riktigt intressant är skillnaden i fleromättade fetter, de ökar från 7-8E% till 10E%, alltså mer än 25%. De fleromättade fettsyrorna innehåller två eller flera dubbelbindningar som är oxidationsbenägna.** De fleromättade fettsyrorna linolensyra (omega-3, n-3) och linolsyra (omega-6, n-6) räknas som essentiella***, livsnödvändiga. I grova drag anses n-3 vara antiinflammatoriskt medan n-6 gynnar inflammationer. Inflammationer i begränsad utsträckning är en del av kroppens egna försvarsmekanismer men förutsätter att de kan avaktiveras när de inte längre behövs. Det sker naturligt via omega-3-baserade ämnen. I studien finns inga data på fördelningen n-6/n-3. Den bör vara 4 eller lägre, men är ofta 10 eller högre i dagens mat.

Each diet was designed to be healthful like the Dietary Approaches to Stop Hypertension (DASH) diet using commonly available foods and was reduced in saturated fat, cholesterol, and sodium, but rich in fruits, vegetables, fiber, potassium, and other minerals.

Min tolkning: Alla kostvarianter var ”hälsosam” DASH baserat på vanlig mat med reducerad andel mättat fett, kolesterol samt salt samt rik på frukt, vegetabilier, kalium och andra mineraler.

Hälsosam och nyttig är två ”gråord” utan egentligt innehåll. Deras betydelse kan bara definieras i förhållande till åsikterna hos den/de som använder dem.

Dessutom en kommentar om statistisk signifikans.

Statistical significance was defined as p≤0.05

Min kommentar: Statistisk signifikans används som ett mått på hur stor sannolikhet att slumpen påverkar utfallet. p≤0.05 innebär att risken för slumpmässigt utfall är 1/20 eller mindre. I sant vetenskapliga sammanhang är det ett ytterst mesigt värde, fysiker kräver tusentals gånger bättre precision. Om ett försök bygger på en hållbar hypotes, är väl genomförd och ordentligt mätt så bör p vara ≤0.01 eller bättre.

Ett skäl till varför jag finner studien väl värd att uppmärksamma och kommentera är följande:

Glycated albumin and fructosamine, markers of 2–3-week cumulative exposure to blood glucose, may be especially well suited for evaluating the effects of dietary carbohydrates on glycemia in an intermediate-term trial setting.

Min tolkning: Glykerat albumin och fruktosamin är markörer för de senaste 2-3 veckornas exponering för blodsocker och väl anpassat för att mäta kolhydraters inverkan under måttligt lång tid.

Glykering innebär att en monosackarid, vanligen glukos, (på ett slumpmässigt sätt) binder till andra ämnen. Om det sker ”medvetet” genom enzymer kallas det glykosylering och är sannolikt en behövd reaktion. Den mäts vanligen som HbA1c, det som vanligen men slarvigt kallas ”långtidsblodsocker”. Ju högre värde dess större andel av detta blodprotein är ”försockrat”, förstört och odugligt för sin uppgift. Till all lycka har de röda blodkropparna en begränsad livslängd på runt 120 dagar, går till återvinning och ersätts med nya.

Glykering drabbar även det ymnigast förekommande proteinet (50% eller mer av blodets proteininnehåll), albumin. Det fungerar som en slags ”personlig assistent” som hjälper t.ex. fettsyror*** genom blodet då de på egen hand inte är vattenlösliga. Det hjälper även laddade joner som Ca2+, Na+ and K+ samt hormoner (ex. sköldkörtelhormonet tyroxin, T4). Utan denna hjälp skulle de positivt laddade jonerna omgående förena sig med negativa joner, t.ex. Cl

Glykerade proteiner inklusive albumin och HbA1c benämns AGE, Advanced Glycated End-products. De är alla ett uttryck för och mått på skadlig inverkan på kroppen. Märk väl att de enda AGE vi vanligen mäter är HbA1c men minns att de är skadliga på många fler ställen. De rynkor vi med tiden får på kroppen beror i viss utsträckning på att fiberproteinet i huden, kollagen, blir glykerat.

I denna studie mäts glykeringen, ovanligt nog, via fruktosamin. Man gör det förmodligen främst för att förkorta studietiden då det främst återspeglar de senaste två veckornas blodsocker. Den spin-off av metoden jag uppskattar är att den även mäter inverkan av fruktosen i födan. Andra källor har redovisat att fruktos har en flerfalt högre produktion av AGE än via glukos.

Studien innehåller många fler aspekter än jag kommenterat, ta hem och läs den!

Jag skulle uppskatta en variant av denna studie där man satsar på seriös lågkolhydratkost, undviker att öka protein, dämpar fruktos samt ökar energiandelen från neutralt (icke lättoxiderade) mättade fettsyror samt redovisar n-6/n-3.


*) Washout, för att ”nollställa” mellan kostvarianterna.

**) Linolja är ett fleromättat fett som har använts under lång tid i målarsammanhang. Trasor eller trassel som innehåller linolja kan självantända på grund av oxidationsprocessen!

***) Det våra kroppar inte själva kan producera kallas essentiellt och måste ovillkorligen tillföras via maten.

****) När albumin lotsar fettsyror i blodet kallas de, lite udda, för fria fettsyror.

Studien är Open Access och verkar inte vara finansierad från någon med kommersiellt intresse av utfallet.

Christian Gram (1853 – 1938) var dansk och utvecklade en metod (publicerad 1884) att göra bakterier lättare att se i mikroskop. I den korta beskrivningen nämnde han att en speciell bakterie inte behöll sin färg.

Metoden har använts under lång tid men är med alla mått, även Grams eget, ospecifik. I stort sett kommer bakterier med ”tjocka” cellväggar* att behålla färgningen, de gram-positiva, gram-negativa med ”tunnare” cellväggar färgas inte. Positiv och negativ har alltså inget med elektriska spänningar/potentialer att göra utan är ”labbspråk” för hur ett test utfaller.

bacteria_envelope-svgGrampositiv bakterie: (övre bilden): 1-cellmembran, 2-cellvägg med tjockt peptidoglykanskikt, 3-periplasma. (färgas)

Gramnegativ bakterie: (nedre bilden) 4-cellmembran, 5-cellvägg, 6-yttre membran med lipopolysackarid, 7-periplasma. (färgas inte)

Källa: Wikipedia, Gramnegativa bakterier

Så till skälet för att jag skriver om detta. Om citaten nedan beror på bristande insikt, önsketänkande eller i syfte att förleda är omöjligt att avgöra.

Gramnegativa bakterier har en negativ cellväggspotential som kan få positivt laddade silverjoner (Ag+) att dras till bakterien. ”As the lipopolysaccharides are highly-charged, the Gram negative cell wall has an overall negative charge.” Läs om detta på Wikipedia. Väl i kontakt med bakterien orsakar de en så stor kemisk och elektrisk oreda att bakterien dör. För att få en dödande effekt måste därmed silverpartiklar först övergå till jonisk form. Detta gör de i viss mån genom mekanisk nötning och genom kontakt med vätska, men man får ändå konstatera att en produkt som redan till merparten är jonisk, har ett stort övertag då den slipper konverteringsfasen från partikel till jon. Denna konvertering sker bara med en liten del av partiklarna och är jämfört med en redan jonisk produkt inte speciellt effektiv.

Källa här och nedan: http://www.ion-silver.com/allt.om.silver.html

Författaren gör svepande generaliseringar att gramnegativa bakterier är patogena (sjukdomsframkallande) och grampositiva är ”goda”:

Den positivt laddade silverjonen dras som en magnet till de oftast negativt laddade patogena Gramnegativa bakterierna.

och

Detta beror på att de goda tarmbakterierna – mjölksyrabakterierna acidophilus och bifidus har en tjockare cellvägg (de är grampositiva bakterier), det är mycket där skillnaden ligger och de påverkas enligt många källor inte nämnvärt av silvret. En amerikansk tillverkare har gjort en studie som visar just detta: American Biotech Labs studie  (Död länk)

Jag har funnit en oerhört innehållsrik tysk studie, här ett utdrag om Staphylococcus aureus (grampositiv) och Escherichia coli (gramnegativ). Se detaljer om dessa längre ner.

Previous studies have demonstrated that the silver ions released from silver coatings or compounds are the bioactive component. These ions (Ag+) exert antimicrobial effects on a wide spectrum of microorganisms, including Staphylococcus aureus, Escherichia coli and many fungi [1–3].

Källa: Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles  (Jag har fått tillgång till hela studien i form av Author’s personal copy)

Min åsikt är att det inte finns en distinkt uppdelning i ”goda” och ”dåliga” bakterier som kan särskiljas via gramtester och som silverprodukter kan utnyttja.

Den som upptäcker fel i det jag skriver kan kommentera eller maila till erik(dot)matfrisk(at)gmail.com.

Tidigare i ämnet: Silver – Del 1, grundläggande kemi,  Silver – del 2, hur farligt/ofarligt är ett ämne?,  Silver – del 3, utspädningseffekten,  Silver – del 4, Vad är en kolloid?,  Silver – del 5, Är det ”farligt”?,  Silver – del 6, passage genom hud,  Silver – del 7, metalloproteiner? Silver – del 8, vad är oligodynamisk effekt?,  Silver – del 9, några av silverjonens egenskaper,  Silver – del 10 – en potent virusdödare?,  Silver – del 11, begreppsförvirring?,  Silver – del 12, Harmlöst eller farligt?,  Silver – del 13, silvernanopartiklar i blod in vivo

Fortsättning följer med tiden


*) Denna ”bild” är oerhört förenklad, intresserade kan googla i ämnet.

Staphylococcus aureus (S. aureus), gula stafylokocker, är en bakterietyp som finns i den mänskliga normalfloran hos 25–30 % av befolkningen. I de flesta fall orsakar bakterien ingen skada utan lever i symbios med människokroppen, oftast på huden eller i näsan.

Escherichia coli, förkortas ofta E. coli, är en gramnegativ bakterieart som lever i de nedre delarna av tarmarna hos varmblodiga djur, inklusive fåglar och däggdjur. Det klarlades tidigt att den kan orsaka olika typer av infektioner i bland annaturinvägar, blodbanor, hjärnhinnor och tarmar.

E. coli är nödvändig för normal matsmältning och utgör en stor andel av tarmfloran (intestinala floran). Antalet E. coli-bakterier i en människas avföring varierar mellan 100 miljarder och 10 biljoner per gram feces.

[1] Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52:662–8. (In vitro, ett ”provrörsförsök” med silverjoner från AgNO3)

[2] Alt V et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;25:4383–91. (In vitro, ett ”provrörsförsök”)

[3] Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 2008;18:1482–4. (Behandling av hud, en av kroppens ”ytor”)

Periodiska systemet silver

I periodiska systemet ordnas grundämnen efter egenskaper som atomkärnans antal positiva protoner, oladdade neutroner samt hur de negativt laddade elektronerna är fördelade. Man kan ordna ämnena i följd från en proton + elektron (väte) och uppåt i steg om 1. Bilden till vänster visar ett litet utsnitt runt Ag (Argentum, silver).

  • Uppe till vänster i varje ruta finns atomnumret, ett heltal som anger antal protoner i kärnan.
  • Nere till vänster finns en betydligt större siffra med flera decimaler, atomvikten, som visar medelantalet protoner + neutroner per atom i en ”naturlig” bit av ett ämne. Silver kan förekomma i flera varianter, isotoper, där skillnaden beror av antalet neutroner i kärnan.
  • Uppe till höger ser du en kolumn vars summa, för ett kemiskt inaktivt grundämne, alltid blir densamma som atomnumret och visar antalet elektroner i varje ”skal”, ordnade från det innersta och utåt efter stränga regler. Kemister och fysiker använder hellre ordet orbital som bättre motsvarar den sannolikhetsfunktion som beskriver elektronens ”handlingsutrymme”.
  • Elektroner i de yttre skalen, främst det yttersta (valensskalet) samt hur ”tight” skalen (orbitalerna) är ordnade runt kärnan avgör ämnets fysiska och kemiska egenskaper. Allt vi ser och känner omkring oss beror på dessa elektronskal. Om du rör vid något är det de yttersta elektronerna i din hud som interagerar med de yttersta elektronerna i det du berör, atomkärnorna är aldrig inblandade oavsett hur hårt du greppar, med händer eller verktyg.

Om du har en ring på ditt finger så är det bara dess elektroner du ser och känner. För att se ringen måste det finnas något ljus och några av dess fotoner kommer att ha precis den mängd energi som krävs för att knuffa en elektron upp ur sin bana, den exciteras. När den åter faller ned igen ger den sitt bidrag till den färg vi associerar till föremålet. Naturen tolererar inga tomma platser i de inre orbitalerna och det är därför osannolikt att en elektron som fotonen exciterade återvänder till samma plats innanför det yttersta. Allt detta fixande och trixande  kan observeras och mätas i ett spektroskop.

I ett komplett periodiskt system kan vi notera att ämnen som finns i samma kolumn har ganska lika egenskaper. Det som avgör är om de har samma antal elektroner i yttersta skalet (eller näst intill, i kolumnerna 5, 6, 8, 9 och 10 finns avvikelser).  I bilden ovan kan vi konstatera att alla tre metallerna, koppar, silver och guld, är förhållandevis mjuka och beständiga mot korrosion. De är de enda metaller man kan finna i ren form i naturen, föremål av guld och silver är några av de äldsta fynden av bearbetade metaller som återfunnits. Vanligen uppträder metaller i kemisk bindning till andra ämnen som t.ex. syre.

Metalliskt silver är mycket stabilt som inte vare sig påverkar eller låter sig påverkas påtagligt under normalt förekommande omständigheter. Under 1800-talet började man utnyttja att silver i jonform har rejält annorlunda egenskaper än som metall. Vad är då joner?

  • De stabilaste grundämnena, ädelgaserna, har alla ett yttersta elektronskal som har 8 elektroner, det räknas som ”fyllt”.
  • Genom att studera det periodiska systemet finner vi att natrium (Na) endast har en elektron i yttersta skalet och av det skälet är kemiskt mycket reaktivt. Även Klor (Cl) är kemiskt mycket aktivt, men här beror det på att yttersta orbitalen (”skalet”) innehåller 7 elektroner, en mindre än ”idealet”.
  • Dessa två kan bilda vanligt salt, NaCl. I torr form är saltkristallerna extremt stabila, men i vatten faller de lätt isär (1 liter vatten löser mer än 3 hg salt) och ”i positiv samverkan” kommer natriumatomen att avstå den ensamma yttersta valenselektronen till kloratomen som i sin tur saknat en. Båda atomerna har nu fyllda yttersta elektronskal och är stabila om än elektriskt laddade joner. Bland vattenmolekylerna finns nu positivt laddade natriumjoner och negativt laddade klorjoner, båda med kompletta ytterskal*. Lösningen som helhet är elektriskt neutral, men nere på mikronivå är det elektriskt laddade joner som tillåter att man kan leda elektricitet genom saltat vatten (men inte olja).
  • De lösta jonerna har inte längre någon bindning till sin ”partner” i den ursprungliga kristallen, de ”dansar” lika gärna med en ny, givet att den har motsatt laddning. Det behöver inte innebära att den nya partnern är en jon, det kan mycket väl räcka med en lokal laddningsasymmetri i en godtycklig molekyl.
  • Ett av Jordytans vanligaste ämnen och mer än 2/3 av en människas vikt är vatten (H2O). Det har en laddningsasymmetri, det är polärt. (https://matfrisk.com/2015/05/19/kemi-02-vatten-en-popular-molekyl/)
  • Proteiner får och bibehåller sin komplicerade form genom ömsesidig elektrisk attraktion mellan olika delar av sina beståndsdelar. Ett protein är elektriskt neutralt, men på ytan finns mängder av lokala laddningar som mycket väl kan och kommer att interagera med omgivningen.

Metalliskt silver är alltså begränsat kemiskt aktivt, det kallas ju ädelmetall av den anledningen. Men i samverkan med atomer i en helt annan kolumn (# 17) som har plats för en elektron i yttersta skalet (fluor, klor, brom och jod) kan silvret bilda joner. Dessa kallas silverhalider och är grunden till fotografins kemi. Breder man i mörker en sådan blandning av silver i jonform på ett genomskinligt underlag så har vi fotografisk film, stabil till dess den träffas av strålning, fotoner. Exponeringen är första steget i en lång process som resulterar i att den i grunden glänsande metallen silver ger svärta till den negativa bilden på filmen.

I kemin finns i praktiken en gråzon mellan vad som händer och inte händer. Även det mindre sannolika, att metalliskt silver ska reagera med något i sin omgivning, inträffar då och då. Det är därför man inte kan polera silverbestick och tro att det kommer att glänsa under lång tid ens om man avstår från att använda det. Det reagerar med svavel från mat och fingrar (proteiner!) eller till och med luften och bildar ett lager av mörk silversulfid, Ag2S. Detta har ytterst låg löslighet i vatten (6,21·10−15 g/L vid 25 °C) och kan därför inte diskas rena. Om silversulfid bildas i kroppens vävnader så blir det kvar där för resten av livet, inga förmenta detoxkurer kan göra något åt det.

Det är enbart vid ytan på silvret som sådana reaktioner sker och ökar man den radikalt som t.ex. att finfördela silvret till oerhört små partiklar, äkta kolloidalt silver, så ökar chansen/risken att även en ädelmetall som silver utan särskild provokation reagerar med omgivningen.

Jag hoppas att den som upptäcker fel i det jag skriver kommenterar eller mailar till erik(dot)matfrisk(at)gmail.com.

Fortsättning följer


Överskottsinfo: Silverklorid (AgCl) kan användas i fotokromatiska glasögon, sådana som mörknar i ljus. Där är det ljusets UV-strålar (UV-fotoner har högre energi än synligt ljus) som gör att förhållandevis genomskinlig silverklorid tillfälligt spjälkas till klor och mörka silverpartiklar. Effekten ökar av värme.

*) Oktettregeln bygger på att alla riktigt stabila grundämnen (ädelgaserna) har precis 8 elektroner i yttersta skalet. I jonform samarbetar grundämnen genom att avge och ta upp elektroner för att i samverkan uppnå detta kemins Nirvana.

Effekter som är enkla att mäta ger inte alltid besked om det som har verklig betydelse för patienter och brukare. Forskningsstudier som använder så kallade surrogatmått och kompositmått måste tolkas försiktigt, säger Sigurd Vitols på SBU.  

En av de grundläggande frågorna när insatser i vård och omsorg utvärderas är vilken effekt de har på människors liv och hälsa. När SBU sätter i gång ett utvärderingsprojekt är det därför en viktig fråga vilka effekter som åtgärderna ytterst syftar till. 

Studier som ska undersöka nyttan av en insats eller behandling ska helst inriktas på de slutmål som åtgärden syftar tillnågot som verkligen är viktigt för patienter och brukare.

Källa: SBU – Effektstudier inriktas inte alltid på det mest väsentliga

SBU handbok

Surrogatparametrar är vanligen lätta att mäta och antas ha en avgörande betydelse för t.ex. utveckling av hälsa eller sjukdom. För att ett sådant surrogatmått ska vara meningsfullt måste sambanden vara odiskutabla, något som ofta inte är fallet.

Skälet till att studierna bör inriktas på sluteffekter för personerna, och inte enbart på mellanled (surrogatmått) som tros vara involverade i en skadlig utveckling, är att kopplingen ofta är komplicerad och ofullständigt kartlagd mellan faktorer som betraktas som orsak och verkan. Det är till exempel inte givet att ett läkemedel som minskar skadligt kolesterol också skyddar mot hjärtinfarkt. Dessutom kan åtgärderna ha bieffekter som spelar roll för människors dagliga liv, hälsa och livskvalitet.

Ett mycket tydligt exempel är statiner, s.k. ”kolesterolsänkare”. Preparatindustrin har blomstrat grundat på tveksamma antaganden om ”ont kolesterol” och ”gott kolesterol”. Under de senaste åren har kritiska forskare gradvis punkterat de överdrivna löftena, den senaste är Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review där fyra svenskar tillhör författarna.

Exempelvis bör studier av ett kolesterolsänkande läkemedels förmåga att bromsa åderförkalkning inriktas på att undersöka effekten på människors överlevnad, hjärt-kärlhälsa och livskvalitet.

– Att enbart undersöka effekten på kolesterolnivåerna är alltså inte tillräckligt för att kunna bedöma nyttan med behandlingen, säger han. En kolesterolsänkning som sådan är ju egentligen ointressant för patienten om det inte samtidigt kan visas att patienten har någon nytta av den.

– För patienterna är det effekten på dödlighet, insjuknande i hjärtinfarkt och livskvalitet som är det riktigt intressanta.

Källa: SBU

Så finns kompositmått:

Ett annat problem vid effektmätning kan uppstå när man väljer sammansatta mått, så kallade kompositmått. Då väger forskarna samman flera olika utfall för att öka studiens statistiska styrka. Men om utfallen har väldigt olika dignitet är detta en tvivelaktig metod – till exempel att slå ihop dödlighet med behov av slutenvård.

Man kan, enligt SBU, helt förrycka sanningen genom att använda kompositmått:

– I värsta fall kan kompositmåttet maskera en negativ behandlingseffekt på verkligt viktiga utfall.

SBU utvärderar metoder framför allt inom hälso- och sjukvården genom att systematiskt och kritiskt granska den vetenskapliga litteraturen på olika områden.

Källa: Statens beredning för medicinsk och social utvärdering

SBU handbok

Som jag ser det är forskning inom kost och näraliggande områden oerhört banal och fokuserar på industrins intressen snarare än reella hälsoaspekter. Ur media väller påståenden om superfoods, fettförbrännare och förhoppningar om viktminskningsmediciner av diverse slag.

Riksmedia anlitar par préférence standardiserade böneutropare som t.ex. Mai-Lis Hellenius, Charlotte Erlanson-Albertson, Claude Marcus och andra som är djupt rotade i det hittillsvarande och vars status bland sina likar och finansiärer är hyfsat beroende av de åsikter man uttrycker. 

Lönsamhet inom matindustri bygger på samma grund som andra affärer, låga råvaru- och arbetskostnader samt återkommande kunder. Marknadsföringen sker gärna med ”vetenskap” som ofta(st) bekostas och utförs på industrins uppdrag och med förutsättning/förhoppning att förstärka konsumenternas tilltro till deras produkter.

När forskningsresultat blir missvisande beror det ofta på svagheter i studiernas upplägg och genomförande – det visar SBU:s systematiska översikter. Men det kan också handla om tankefel och bristande saklighet, både hos forskarna själva och hos andra som tolkar deras fynd.

Källa: SBU – Vinklad tolkning snedvrider fynden

Svagheter i studiernas upplägg och genomförande är ett ytterst vanligt systemfel, bristande precision i mätningar och skrämmande låga krav på det som kallas statistisk signifikans.* Observationsstudier av kostfaktorer kan omfatta tiotusentals deltagare och sträcka sig över tiotals år men data om vad deltagarna äter baseras ofta på enstaka eller ett fåtal ifyllda formulär under samma tid. Oprecision i ingångsdata kan aldrig uppvägas av vare sig antal deltagare eller tid, skit in ger skit ut, SISU.

Min åsikt är att det inte är de vassaste knivarna i lådan som driver koststudier. Beställarna vill dessutom ha hyfsat snabba resultat, båda omständigheterna har sänkt kraven på statistisk signifikans.

Lägg märke till ”…bristande saklighet…”! Det är en omskrivning för att ”forskarna” har ett bildningsunderskott, låter sig manipuleras alternativt inte vidareutbildar sig efter de senaste pålitliga rönen.

Långt ifrån all forskning är tillförlitlig. Direkt fusk och oredlighet kan få stor uppmärksamhet i medierna men är trots allt relativt ovanligt. Betydligt mer utbredda problem, som inte betraktas som fusk men som ändå förvränger resultaten, förbigås ofta med tystnad. Ändå kan de leda till fullständigt felaktiga slutsatser.

Paolo Macchiarini på Karolinska är ett exempel på en högprofilfuskare vars verksamhet med stor sannolikhet ledde till förtida död hos försökspersonerna.

I stället för att allsidigt undersöka ett ämne eller pröva en hypotes, kan det vara frestande för forskare att vinkla sina frågor och svar för att få stöd för den egna uppfattningen. Sakligheten kan hotas av politiska hänsynstaganden, personliga karriärintressen, professionella dispyter, avundsjuka, hybris** och ärelystnad.

”Personliga karriärintressen”! Det gäller att klättra på de stegpinnar som bjuds.

Vetenskapssamhället har fastlagt ett etiskt fundament som förväntas gälla. Här ingår bland annat att forskningsresultat inte får manipuleras för att gagna vinstintresse eller personlig övertygelse hos forskaren själv eller omgivningen. Vetenskapliga påståenden måste vara öppna för ifrågasättande och ska accepteras på grundval av observerade fakta – inte på grund av särintressen. Sakinnehållet i hypoteser, invändningar och kritik ska beaktas utan hänsyn till vem eller vilka som framför dem.

Till detta kommer ”nyttiga idioter” som lydigt förmedlar pressmeddelanden och annat material utan att kritiskt granska eller ställa följdfrågor.


*) Statistisk signifikans innebär, väldigt svepande uttryckt, hur stor risk det är att utfallet av en observation eller ett experiment beror på slumpen.

**) Hybris – ett uttryck för ett sinnestillstånd där en person har en starkt överdriven självuppfattning, se Storhetsvansinne

Kemi i en cell

Publicerat: 2016-05-12 i Kemi, Vetenskap
Etiketter:, ,

Metabolism Chart

Detta är en karta över kemin i en cell så som den var känd 1987. Antag att någon väljer att gå in i den och peta, hur sannolikt är det att bara ”rätt” saker påverkas? Klicka på kartan så ser du den i större skala i en ny flik.

Statiner verkar genom att hämma enzymet HMG-CoA reduktas, som är det hastighetsbegränsande steget i kroppens nybildning av kolesterol.

Från rad E och neråt samt kolumn 9 och till höger finns de reaktioner som inte fungerar fullt ut för statinbehandlade. Vid G11 finns Mevalonat och strax till vänster finns platsen där HMG-CoA reduktas verkar. Följer du pilarna efter den platsen ser du allt som påverkas, bland dem 7-Dehydroxycholesterol, en råvara för bildning av D-vitamin. Från Cholesterol (G/F12) leder pilarna vidare mot östrogen, testosteron och andra steroidhormoner. Kortisol/kortison ligger också nedströms kolesterol och påverkas också, bra eller dåligt beror på omständigheterna.

Varje gång du ser att forskare nämner att deras forskning förväntas leda till mediciner mot både det ena och det andra så minns denna karta som säkert utvecklats ytterligare sedan den ritades.

Diabetologia 2011 54:2506-2514

Just nu sitter jag med ”Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol” av Lim, Hollingsworth, Aribisala, Chen, Mathers och Taylor, publicerad i Diabetologia 2011. Länk för att hämta hem hela studien

Den är intressant då den bakomliggande studien med framgång testar en alternativ kostmodell som på kort tid dramatiskt förbättrar viktiga hälsovärden som annars kännetecknar diabetiker typ 2 i det så kallade ”naturalförloppet”.

De hittillsvarande behandlingarna diabetes typ 2, åldersdiabetes / sockersjuka, kan inte bryta diabetesens progressiva natur, i bästa fall dämpar de utvecklingshastigheten. Detta till synes ohejdbart negativa förlopp har fått den oskyldiga beteckningen naturalförloppet, kanske för att inte oroa patienterna med detaljer som synskador (ända till blindhet), nervskador av diverse slag t.ex. tömningsproblem i magsäcken (gastropares), impotens, cirkulationsskador med sår som inte läker samt kallbrand med fot- och underbensamputation, en överrepresentation av cancer samt hjärt- och kärlsjukdomar. Listan kan göras längre men illustrerar allvarliga händelser som ingår i ”naturalförloppet”.

Magkirurger, som opererar feta med diabetes typ 2, noterar med storögd förvåning att patienternas diabetes förbättras i stort sett när de rullas ut från operationssalen. Förklaringarna är ofta väldigt fantasifulla, gemensamt är att vidare undersökningar av dem kräver omfattande resurser.

Deltagarna i denna studie får liknande snabba förbättringar genom att närma sig problemet från en helt annan synvinkel, nämligen genom extrem energireducering via vLCD-kost (Very Low Calorie Diet). Resultaten är utomordentligt goda och logiskt betingade, men sannolikt inte efter den modell studiens författare föreslår.

Mitt alternativa resonemang bakom detta är på intet sätt komplicerat och bygger på fysiologins välkända grunder, men då det går på tvärs med vedertagen praxis kommer jag att beskriva tänkesättet mycket grundligt, för en del blir det nog irriterande utdraget. För att inte textmassan skall bli överväldigande stor delar jag upp den över flera blogginlägg, vart och ett med ett någorlunda sammanhållet tema. Studien är fri att ladda hem och läsa. Den innehåller mycket mer information än den jag kommer att referera till.

Läs gärna även Hur vända utveckling av sockersjuka? och Ketogen extrem lågkalorikost ger bättre hälsa hos sockersjuka, diabetiker typ 2

Del 1, fortsättning följer

Vi tror gärna att vetenskap gräver fram och fastställer sanningar men tyvärr kan vi aldrig slutgiltigt avgöra vad som är ”vetenskaplig” sanning! Det har aldrig hänt och kommer aldrig att hända. Till och med ett så exakt område som matematik förutsätter ett gäng utgångspunkter, axiom, som i sig inte kan bevisas vara sanna. Väl tillämpad vetenskap avslöjar enbart var sanningen inte finns, rått uttryckt det som är falskt.

Vetenskap kan jämföras med ett fisknät: Trådarna binder samman ”sanningar” medan hålen, merparten av hela ytan, representerar felaktigheter. Ju fler hål vi kan ”öppna” desto effektivare blir nätet.

Kunskap inleds med en hypotes, ett genomfunderat och avgränsat antagande som prövas genom experiment.

  • Om experiment visar att hypotesen inte stämmer så skall den förkastas hur tilltalande den än var.
  • Om experimentet inte kan avvisa hypotesen skall den testas ytterligare gånger, helst med andra metoder, för att eliminera risken för att fel metoder eller slumpen spelat in. Experiment som inte kan reproduceras, upprepas med samma metoder och samma utfall, är inget stöd för en hypotes.
  • I alla tester ska man noga specificera felmarginaler där det är relevant. Det är t.ex. meningslöst att ange utfall i millimeter och sekunder om ingångsvärden anges i hela meter och timmar.
  • Om en hypotes är robust och klarar attacker av väl designade experiment kan den behållas, åtminstone tills vidare.

Så bygger man vidare och samlar testade och ännu ej motbevisade hypoteser. Relevanta hypoteser, nya såväl som gamla, kan kombineras till eller stödja en teori. Den eller de av hypoteserna som har störst felmarginal begränsar teorins värde. Gradvis modifierar och ersätter man undermåliga hypoteser så att teorin motsvarar de bästa kunskaper som finns inom området. Ingen teori är slutgiltig, om och när den modifieras så hade den uppenbarligen förbättringspotential, den var inte tillräckligt nära sanningen.

Sedan man i större skala började mäta ”kolesterol”* har preparatindustrin (”läkemedelsindustrin”) sett gigantiska vinstmöjligheter för preparat som påverkar olika varianter av ”kolesterol”. Hundratals större och tusentals mindre studier har genomförts med avsikt att visa hypotesen att ”förbättrat kolesterol” ger bättre hälsa och lägre dödlighet. Hittills har man nått stora marknadsföringsframgångar för sina preparat, numera statiner, bland läkare. Däremot har de praktiska utfallen av statiner bland användarna varit minst sagt blandade, bland annat för de verkningar som kommer av att man hämmar produktion av ämnen som är betydelsefulla. De kallas ”biverkningar” av industrin men de personer de drabbar skulle nog snarare klassa dem som primära**.

Så happar det sig att en av de större aktörerna, Eli Lilly, aktiverar en bomb under sin egen verksamhet såväl som hela ”kolesteroljippot”. Ungefär så här gick det till:

  • En hypotes är att högre mängder lipoproteiner i blodet som kallas LDL, även utskällt som ”ont kolesterol”, är till allvarlig nackdel för hälsan, potentiellt livsfarligt.
  • En annan hypotes är att en lägre mängd av lipoproteinet HDL är till allvarlig nackdel för hälsan, potentiellt livsfarligt.
  • Kan man då skapa ett preparat som minskar LDL och samtidigt höjer HDL är det rimligt att hälsa och livslängd skall förbättras, kanske till och med avsevärt, eller hur?

NYTimes Statiner

It is a drug that reduces levels of LDL cholesterol, the dangerous kind, as much as statins do. And it more than doubles levels of HDL cholesterol, the good kind, which is linked to protection from heart disease. As a result, heart experts had high hopes for it as an alternative for the many patients who cannot or will not take statins.

Min tolkning: Det är ett preparat som sänker LDL i samma grad som statiner. Samtidigt dubblar det HDL vilket är kopplat som skydd mot hjärtåkommor (linked to protection***). Hjärtexpertis hade därför stora förhoppningar till detta preparat för de många patienter som inte kan eller väljer att inte ta statiner.

Källa: The New York Times

Lägg märke till slutklämmen i sista meningen, ”…the many patients who cannot or will not take statins.” Flertalet patienter är alldeles onödigt följsamma mot sina läkare, lydiga, och tar vanligen ordinerade preparat. De som slutar i förtid (kolesterolsänkare är avsedda att användas livsvarigt) gör det vanligen för att de oönskade verkningarna** upplevs som större problem. I och med Internet ökar sannolikt andelen olydiga då det är betydligt lättare att få information.

But these specialists were stunned by the results of a study of 12,000 patients, announced on Sunday at the American College of Cardiology’s annual meeting: There was no benefit from taking the drug, evacetrapib. The drug’s maker, Eli Lilly, stopped the study in October, citing futility, but it was not until Sunday’s meeting that cardiologists first saw the data behind that decision.

Min tolkning: Specialisterna förvånades av en studie på 12000 patienter: Det fanns inga fördelar av preparatet evacetrapib. Eli Lilly avslutade studien i oktober med skälet att det var meningslöst.

Jag avstår från att återge siffrorna, de finns via länken till NY Times ovan. LDL sjönk och HDL steg som förväntat men utfallen blev nästan på pricken desamma hos behandlade och kontrollgruppen.

“We had an agent that seemed to do all the right things,” said Dr. Stephen J. Nicholls, the study’s principal investigator and the deputy director of the South Australian Health and Medical Research Institute in Adelaide. “It’s the most mind-boggling question. How can a drug that lowers something that is associated with benefit not show any benefit?” he said, referring to the 37 percent drop in LDL levels with the drug.

Min tolkning: ”Vi hade ett preparat som gjorde alla saker rätt, hur kan det gå fel?”

Givet att studien är väl planerad och utförd är den ett fantastiskt bidrag för att ifrågasätta hittillsvarande teorier om att ”kolesterol” skall behandlas för att förbättra överlevnaden.

Dr. Steven Nissen of the Cleveland Clinic added, “These kinds of studies are wake-up calls.”

Min tolkning: ”Denna typ av studier är ögonöppnare.”

Naturligtvis finner industriintressena motmedel, några av dem redovisas i artikeln:

Cardiologists still have high hopes for a new class of cholesterol drugs, known as PCSK-9 inhibitors, that cause LDL to plummet to levels never seen in drug treatments.

Min tolkning: Hjärtspecialister ställer fortfarande höga förhoppningar till PCSK-9-hämmare som sänker LDL till nivåer som aldrig tidigare setts vid preparatbehandling.

Med tanke på att statinbehandling kostar ”pennies a day” så är ju kostnaden för PCSK-9-preparat högre, 14000 dollar per år. Nu gäller det att visa att de PCSK-9-behandlade överlever i större omfattning än kontrollgruppen, gärna utan ”biverkningar”.


*) Jag sätter ”kolesterol” inom citationstecken då begreppet är etablerat som ord men helt irrelevant i sin betydelse.

**) Statiner har ett stort antal oönskade verkningar, några av dessa finns i FASS (inte ordnade efter frekvens av förekomst): Anemi, insomnia, depression, huvudvärk, parastesier, yrsel, perifer neuropati, nedsatt minnesförmåga,  interstitiell lungsjukdom, förstoppning, buksmärtor, flatulens, dyspepsi, diarré, illamående, kräkningar, pankreatit, hepatit/gulsot, fatal och icke-fatal leversvikt, klåda, hudutslag, håravfall, myopati* (inklusive myosit), rabdomyolys med eller utan akut njursvikt, myalgi, muskelkramper, tendinopati, ibland försvårad med ruptur, immunmedierad nekrotiserande myopati, erektil dysfunktion, asteni. Ett överkänslighetssyndrom bestående av några av följande symtom har rapporterats i sällsynta fall: angioödem, lupusliknande sjukdomsbild, reumatisk polymyalgi, dermatomyosit, vaskulit, trombocytopeni, eosinofili, SR-stegring, artrit och artralgiurtikaria, fotosensibilisering, feber, rodnad, dyspné och allmän sjukdomskänsla.

***) Lägg märke till den svaga formuleringen, vid lite eftertanke inser man att det ofta de uppträder hos samma personer, inte att högt HDL innebär ett skydd.